
IEEE Std 754™-2008
(Revision of

IEEE Std 754-1985)

IEEE Standard for Floating-Point
Arithmetic

IEEE
3 Park Avenue
New York, NY 10016-5997, USA

29 August 2008

IEEE Computer Society
Sponsored by the
Microprocessor Standards Committee

75
4TM

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754™-2008
(Revision of

IEEE Std 754-1985)

IEEE Standard for Floating-Point
Arithmetic

Sponsor

Microprocessor Standards Committee
of the
IEEE Computer Society

Approved 12 June 2008

IEEE-SA Standards Board

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

Abstract: This standard specifies interchange and arithmetic formats and methods for binary and
decimal floating-point arithmetic in computer programming environments. This standard specifies
exception conditions and their default handling. An implementation of a floating-point system
conforming to this standard may be realized entirely in software, entirely in hardware, or in any
combination of software and hardware. For operations specified in the normative part of this
standard, numerical results and exceptions are uniquely determined by the values of the input
data, sequence of operations, and destination formats, all under user control.

Keywords: arithmetic, binary, computer, decimal, exponent, floating-point, format, interchange,
NaN, number, rounding, significand, subnormal

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2008 by the Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 29 August 2008. Printed in the United States of America.

IEEE is a registered trademark in the U.S. Patent & Trademark Office, owned by the Institute of Electrical and Electronics
Engineers, Incorporated.

PDF: ISBN 978-0-7381-5752-8 STD95802
Print: ISBN 978-0-7381-5753-5 STDPD95802

No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written
permission of the publisher.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Standards documents are developed within the IEEE Societies and the Standards Coordinating Committees of the
IEEE Standards Association (IEEE-SA) Standards Board. The IEEE develops its standards through a consensus
development process, approved by the American National Standards Institute, which brings together volunteers
representing varied viewpoints and interests to achieve the final product. Volunteers are not necessarily members of the
Institute and serve without compensation. While the IEEE administers the process and establishes rules to promote
fairness in the consensus development process, the IEEE does not independently evaluate, test, or verify the accuracy
of any of the information or the soundness of any judgments contained in its standards.

Use of an IEEE Standard is wholly voluntary. The IEEE disclaims liability for any personal injury, property or other
damage, of any nature whatsoever, whether special, indirect, consequential, or compensatory, directly or indirectly
resulting from the publication, use of, or reliance upon this, or any other IEEE Standard document.

The IEEE does not warrant or represent the accuracy or content of the material contained herein, and expressly
disclaims any express or implied warranty, including any implied warranty of merchantability or fitness for a specific
purpose, or that the use of the material contained herein is free from patent infringement. IEEE Standards documents
are supplied “AS IS”.

The existence of an IEEE Standard does not imply that there are no other ways to produce, test, measure, purchase,
market, or provide other goods and services related to the scope of the IEEE Standard. Furthermore, the viewpoint
expressed at the time a standard is approved and issued is subject to change brought about through developments in the
state of the art and comments received from users of the standard. Every IEEE Standard is subjected to review at least
every five years for revision or reaffirmation. When a document is more than five years old and has not been
reaffirmed, it is reasonable to conclude that its contents, although still of some value, do not wholly reflect the present
state of the art. Users are cautioned to check to determine that they have the latest edition of any IEEE Standard.

In publishing and making this document available, the IEEE is not suggesting or rendering professional or other
services for, or on behalf of, any person or entity. Nor is the IEEE undertaking to perform any duty owed by any other
person or entity to another. Any person utilizing this, and any other IEEE Standards document, should rely upon his or
her independent judgment in the exercise of reasonable care in any given circumstances or, as appropriate, seek the
advice of a competent professional in determining the appropriateness of a given IEEE standard.

Interpretations: Occasionally questions may arise regarding the meaning of portions of standards as they relate to
specific applications. When the need for interpretations is brought to the attention of IEEE, the Institute will initiate
action to prepare appropriate responses. Since IEEE Standards represent a consensus of concerned interests, it is
important to ensure that any interpretation has also received the concurrence of a balance of interests. For this reason,
IEEE and the members of its societies and Standards Coordinating Committees are not able to provide an instant
response to interpretation requests except in those cases where the matter has previously received formal consideration.
A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board Operations Manual
shall not be considered the official position of IEEE or any of its committees and shall not be considered to be, nor be
relied upon as, a formal interpretation of the IEEE. At lectures, symposia, seminars, or educational courses, an
individual presenting information on IEEE standards shall make it clear that his or her views should be considered the
personal views of that individual rather than the formal position, explanation, or interpretation of the IEEE.

Comments for revision of IEEE Standards are welcome from any interested party, regardless of membership affiliation
with IEEE. Suggestions for changes in documents should be in the form of a proposed change of text, together with
appropriate supporting comments. Comments on standards and requests for interpretations should be submitted to the
following address:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
Piscataway, NJ 08854
USA

Authorization to photocopy portions of any individual standard for internal or personal use is granted by The Institute
of Electrical and Electronics Engineers, Inc., provided that the appropriate fee is paid to Copyright Clearance Center.
To arrange for payment of licensing fee, please contact Copyright Clearance Center, Customer Service, 222 Rosewood
Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to photocopy portions of any individual standard for
educational classroom use can also be obtained through the Copyright Clearance Center.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

Introduction

This introduction is not part of IEEE Std 754-2008, IEEE Standard for Floating-Point Arithmetic.

This standard is a product of the Floating-Point Working Group of, and sponsored by, the Microprocessor
Standards Committee of the IEEE Computer Society.

This standard provides a discipline for performing floating-point computation that yields results
independent of whether the processing is done in hardware, software, or a combination of the two. For
operations specified in the normative part of this standard, numerical results and exceptions are uniquely
determined by the values of the input data, the operation, and the destination, all under user control.

This standard defines a family of commercially feasible ways for systems to perform binary and decimal
floating-point arithmetic. Among the desiderata that guided the formulation of this standard were:

a) Facilitate movement of existing programs from diverse computers to those that adhere to this
standard as well as among those that adhere to this standard.

b) Enhance the capabilities and safety available to users and programmers who, although not expert
in numerical methods, might well be attempting to produce numerically sophisticated programs.

c) Encourage experts to develop and distribute robust and efficient numerical programs that are
portable, by way of minor editing and recompilation, onto any computer that conforms to this
standard and possesses adequate capacity. Together with language controls it should be possible to
write programs that produce identical results on all conforming systems.

d) Provide direct support for
― execution-time diagnosis of anomalies
― smoother handling of exceptions
― interval arithmetic at a reasonable cost.

e) Provide for development of
― standard elementary functions such as exp and cos
― high precision (multiword) arithmetic
― coupled numerical and symbolic algebraic computation.

f) Enable rather than preclude further refinements and extensions.

In programming environments, this standard is also intended to form the basis for a dialog between the
numerical community and programming language designers. It is hoped that language-defined methods for
the control of expression evaluation and exceptions might be defined in coming years, so that it will be
possible to write programs that produce identical results on all conforming systems. However, it is
recognized that utility and safety in languages are sometimes antagonists, as are efficiency and portability.

Therefore, it is hoped that language designers will look on the full set of operation, precision, and exception
controls described here as a guide to providing the programmer with the ability to portably control
expressions and exceptions. It is also hoped that designers will be guided by this standard to provide
extensions in a completely portable way.

iv
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

Notice to users

Laws and regulations

Users of these documents should consult all applicable laws and regulations. Compliance with the
provisions of this standard does not imply compliance to any applicable regulatory requirements.
Implementers of the standard are responsible for observing or referring to the applicable regulatory
requirements. IEEE does not, by the publication of its standards, intend to urge action that is not in
compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

This document is copyrighted by the IEEE. It is made available for a wide variety of both public and private
uses. These include both use, by reference, in laws and regulations, and use in private self-regulation,
standardization, and the promotion of engineering practices and methods. By making this document
available for use and adoption by public authorities and private users, the IEEE does not waive any rights in
copyright to this document.

Updating of IEEE documents

Users of IEEE standards should be aware that these documents may be superseded at any time by the
issuance of new editions or may be amended from time to time through the issuance of amendments,
corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the
document together with any amendments, corrigenda, or errata then in effect. In order to determine whether
a given document is the current edition and whether it has been amended through the issuance of
amendments, corrigenda, or errata, please visit the IEEE Standards Association Web site at
http://ieeexplore.ieee.org/xpl/standards.jsp, or contact the IEEE at the address listed previously.

For more information about the IEEE Standards Association or the IEEE standards development process,
visit the IEEE-SA Web site at http://standards.ieee.org.

Errata

Errata, if any, for this and all other standards can be accessed at the following URL: http://standards.ieee.org/
reading/ieee/updates/errata/index.html. Users are encouraged to check that URL for errata periodically.

Interpretations

Current interpretations can be accessed at the following URL: http://standards.ieee.org/reading/ieee/interp/
index.html.

v
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

http://ieeexplore.ieee.org/xpl/standards.jsp
http://standards.ieee.org/reading/ieee/interp/index.html
http://standards.ieee.org/reading/ieee/interp/index.html
http://standards.ieee.org/reading/ieee/updates/errata/index.html
http://standards.ieee.org/
http://standards.ieee.org/reading/ieee/updates/errata/index.html

Patents
Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken with respect to the existence
or validity of any patent rights in connection therewith. A patent holder or patent applicant has filed a
statement of assurance that it will grant licenses under these rights without compensation or under
reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair
discrimination to applicants desiring to obtain such licenses. Other Essential Patent Claims may exist for
which a statement of assurance has not been received. The IEEE is not responsible for identifying Essential
Patent Claims for which a license may be required, for conducting inquiries into the legal validity or scope
of Patents Claims, or for determining whether any licensing terms or conditions provided in connection with
submission of a Letter of Assurance, if any, or in any licensing agreements are reasonable or non-
discriminatory. Users of this standard are expressly advised that determination of the validity of any patent
rights, and the risk of infringement of such rights, is entirely their own responsibility. Further information
may be obtained from the IEEE Standards Association.

Participants
The following participants in the Floating-Point Working Group contributed to the development of this
standard:

Dan Zuras, Chair
Mike Cowlishaw, Editor

Alex Aiken
Matthew Applegate
David Bailey
Steve Bass
Dileep Bhandarkar
Mahesh Bhat
David Bindel
Sylvie Boldo
Stephen Canon
Steven R. Carlough
Marius Cornea
Mike Cowlishaw †
John H. Crawford
Joseph D. Darcy
Debjit Das Sarma
Marc Daumas
Bob Davis †
Mark Davis
Dick Delp
Jim Demmel
Mark A. Erle
Hossam A. H. Fahmy
J.P. Fasano
Richard Fateman
Eric Feng
Warren E. Ferguson
Alex Fit-Florea
Laurent Fournier
Chip Freitag
Ivan Godard
Roger A. Golliver †

David Gustafson
Michel Hack
John R. Harrison
John Hauser
Yozo Hida
Chris N. Hinds
Graydon Hoare
David G. Hough †
Jerry Huck
Jim Hull
Michael Ingrassia
David V. James
Rick James
William Kahan †
John Kapernick
Richard Karpinski
Jeff Kidder †
Plamen Koev
Ren-Cang Li
Zhishun Alex Liu
Raymond Mak
Peter Markstein †
David Matula
Guillaume Melquiond
Nobuyoshi Mori
Ricardo Morin
Ned Nedialkov
Craig Nelson
Stuart Oberman
Jon Okada

Ian Ollmann
Michael Parks
Tom Pittman
Eric Postpischil
Jason Riedy
Eric M. Schwarz
David Scott
Don Senzig
Ilya Sharapov
Jim Shearer
Michael Siu
Ron Smith
Chuck Stevens
Peter Tang
Pamela J. Taylor
James W. Thomas
Brandon Thompson
Wendy Thrash
Neil Toda
Son Dao Trong
Leonard Tsai †
Charles Tsen
Fred Tydeman
Liang Kai Wang
Scott Westbrook
Steve Winkler
Anthony Wood
Umit Yalcinalp
Fred Zemke
Paul Zimmermann
Dan Zuras †

† identifies those who also participated in the Ballot Review Committee.

vi
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

The following individual members of the balloting committee voted on this standard. Balloters might have
voted for approval, disapproval, or abstention.

Ali Al Awazi
Tomo Bogataj
Mark Brown
Steven R. Carlough
Juan C. Carreon
Danila Chenetsov
Srinivas Chennupaty
Danila Chernetsov
Naveen Cherukuri
Keith Chow
Glenn Colon-Bonet
Tommy P. Cooper
Robert Corbett
Marius Cornea
Mike Cowlishaw
John H. Crawford
Bob Davis
Florent de Dinechin
Kenneth Dockser
Ulrich Drepper
Sourav K. Dutta
Carol T. Eidt
Bo Einarsson
Mark A. Erle
Hossam A. H. Fahmy
John W. Fendrich
Warren E. Ferguson
Andrew Fieldsend
Rabiz N. Foda
Roger A. Golliver
Sergiu R. Goma
Randall C. Groves
Scott A. Gudgel
Michel Hack

John R. Harrison
Peter L. Harrod
Barry E. Hedquist
Rutger Heunks
Chris N. Hinds
Werner Hoelzl
Dennis Horwitz
David G. Hough
Jerome Huck
David V. James
Muzaffer Kal
Piotr Karocki
Mark J. Knight
Theodore E. Kubaska
Susan Land
Christoph Lauter
Shawn M. Leard
David J. Leciston
Solomon Lee
Vincent Lefevre
Vincent J. Lipsio
Zhishun A. Liu
William Lumpkins
Peter Markstein
Edward M. Mccall
George J. Miao
Gary L. Michel
James Moore
Jean-Michel Muller
Bruce Muschlitz
Michael S. Newman
Charles K. Ngethe
Gregory D. Peterson

Urichl Pohl
Subburajan Ponnuswamy
Jose Puthenkulam
Marko Radmilac
Gary S. Robinson
Robert A. Robinson
Michael D. Rush
M. S. Sachdev
Sridhar Samudrala
Randy Saunders
Bartien Sayogo
Thomas Schossig
Michael J. Schulte
Stephen C. Schwarm
Eric M. Schwarz
Mathew L. Smith
Mitchell W. Smith
Thomas E. Starai
Walter Struppler
Ping T. Tang
Pamela J. Taylor
James W. Thomas
Wendy Thrash
Leonard Tsai
Charles Tsen
S. Tulasidas
Srinivasa R. Vemuru
Steven Wallach
Paul R. Work
Forrest D. Wright
Oren Yuen
Janusz Zalewski
Alexandru Zamfirescu
Dan Zuras

vii
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

When the IEEE-SA Standards Board approved this standard on 12 June 2008, it had the following
membership:

Robert M. Grow, Chair
Thomas Prevost, Vice Chair
Steve M. Mills, Past Chair
Judith Gorman, Secretary

Victor Berman
Richard DeBlasio
Andy Drozd
Mark Epstein
Alexander Gelman
William Goldbach
Arnie Greenspan
Ken Hanus

Jim Hughes
Richard Hulett
Young Kyun Kim
Joseph L. Koepfinger *
John Kulick
David J. Law
Glenn Parsons

Ron Petersen
Chuck Powers
Narayanan Ramachandran
Jon Walter Rosdahl
Anne-Marie Sahazizian
Malcolm Thaden
Howard Wolfman
Don Wright

* Member Emeritus

Also included are the following non-voting IEEE-SA Standards Board liaisons:

Satish K. Aggarwal, NRC Representative
Michael H. Kelley, NIST Representative

Lisa Perry
IEEE Standards Project Editor

Malia Zaman
IEEE Standards Program Manager, Technical Program Development

viii
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

Contents
1. Overview ..1

1.1 Scope ..1
1.2 Purpose ...1
1.3 Inclusions ..1
1.4 Exclusions ...2
1.5 Programming environment considerations ...2
1.6 Word usage ...2

2. Definitions, abbreviations, and acronyms ..3
2.1 Definitions ..3
2.2 Abbreviations and acronyms ..5

3. Floating-point formats ...6
3.1 Overview ..6
3.2 Specification levels ...7
3.3 Sets of floating-point data ...7
3.4 Binary interchange format encodings ...9
3.5 Decimal interchange format encodings ..10
3.6 Interchange format parameters ...13
3.7 Extended and extendable precisions ...14

4. Attributes and rounding ...15
4.1 Attribute specification ..15
4.2 Dynamic modes for attributes ...15
4.3 Rounding-direction attributes ...16

5. Operations ..17
5.1 Overview ..17
5.2 Decimal exponent calculation ...18
5.3 Homogeneous general-computational operations ...19
5.4 formatOf general-computational operations ...21
5.5 Quiet-computational operations ...23
5.6 Signaling-computational operations ...24
5.7 Non-computational operations ...24
5.8 Details of conversions from floating-point to integer formats ..26
5.9 Details of operations to round a floating-point datum to integral value ...27
5.10 Details of totalOrder predicate ...28
5.11 Details of comparison predicates ..29
5.12 Details of conversion between floating-point data and external character sequences30

6. Infinity, NaNs, and sign bit ..34
6.1 Infinity arithmetic ...34
6.2 Operations with NaNs ..34
6.3 The sign bit ...35

7. Default exception handling ..36
7.1 Overview: exceptions and flags ..36
7.2 Invalid operation ...37
7.3 Division by zero ...37
7.4 Overflow ...37
7.5 Underflow ...38
7.6 Inexact ..38

8. Alternate exception handling attributes ...39
8.1 Overview ..39
8.2 Resuming alternate exception handling attributes ..39
8.3 Immediate and delayed alternate exception handling attributes ...40

ix
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

9. Recommended operations ..41
9.1 Conforming language- and implementation-defined functions ..41
9.2 Recommended correctly rounded functions ...42
9.3 Operations on dynamic modes for attributes ..46
9.4 Reduction operations ..46

10. Expression evaluation ..48
10.1 Expression evaluation rules ..48
10.2 Assignments, parameters, and function values ...48
10.3 preferredWidth attributes for expression evaluation ..49
10.4 Literal meaning and value-changing optimizations ..50

11. Reproducible floating-point results ...51

Annex A (informative) Bibliography ...53

Annex B (informative) Program debugging support ...55

Index of operations ..57

x
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Standard for Floating-Point
Arithmetic

IMPORTANT NOTICE: This standard is not intended to assure safety, security, health, or environmental
protection in all circumstances. Implementers of the standard are responsible for determining appropriate safety,
security, environmental, and health practices or regulatory requirements.

This IEEE document is made available for use subject to important notices and legal disclaimers. These notices
and disclaimers appear in all publications containing this document and may be found under the heading
“Important Notice” or “Important Notices and Disclaimers Concerning IEEE Documents”. They can also be
obtained on request from IEEE or viewed at http://standards.ieee.org/IPR/disclaimers.html.

1. Overview 1.0

1.1 Scope 1.1.0

This standard specifies formats and methods for floating-point arithmetic in computer systems — standard
and extended functions with single, double, extended, and extendable precision — and recommends formats
for data interchange. Exception conditions are defined and standard handling of these conditions is
specified.

1.2 Purpose 1.2.0

This standard provides a method for computation with floating-point numbers that will yield the same result
whether the processing is done in hardware, software, or a combination of the two. The results of the
computation will be identical, independent of implementation, given the same input data. Errors, and error
conditions, in the mathematical processing will be reported in a consistent manner regardless of
implementation.

1.3 Inclusions 1.3.0

This standard specifies:
― Formats for binary and decimal floating-point data, for computation and data interchange.
― Addition, subtraction, multiplication, division, fused multiply add, square root, compare, and other

operations.
― Conversions between integer and floating-point formats.
― Conversions between different floating-point formats.
― Conversions between floating-point formats and external representations as character sequences.
― Floating-point exceptions and their handling, including data that are not numbers (NaNs).

1
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

http://standards.ieee.org/IPR/disclaimers.html

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

1.4 Exclusions 1.4.0

This standard does not specify:
― Formats of integers.
― Interpretation of the sign and significand fields of NaNs.

1.5 Programming environment considerations 1.5.0

This standard specifies floating-point arithmetic in two radices, 2 and 10. A programming environment may
conform to this standard in one radix or in both.

This standard does not define all aspects of a conforming programming environment. Such behavior should
be defined by a programming language definition supporting this standard, if available, and otherwise by a
particular implementation. Some programming language specifications might permit some behaviors to be
defined by the implementation.

Language-defined behavior should be defined by a programming language standard supporting this
standard. Then all implementations conforming both to this floating-point standard and to that language
standard behave identically with respect to such language-defined behaviors. Standards for languages
intended to reproduce results exactly on all platforms are expected to specify behavior more tightly than do
standards for languages intended to maximize performance on every platform.

Because this standard requires facilities that are not currently available in common programming languages,
the standards for such languages might not be able to fully conform to this standard if they are no longer
being revised. If the language can be extended by a function library or class or package to provide a
conforming environment, then that extension should define all the language-defined behaviors that would
normally be defined by a language standard.

Implementation-defined behavior is defined by a specific implementation of a specific programming
environment conforming to this standard. Implementations define behaviors not specified by this standard
nor by any relevant programming language standard or programming language extension.

Conformance to this standard is a property of a specific implementation of a specific programming
environment, rather than of a language specification.

However a language standard could also be said to conform to this standard if it were constructed so that
every conforming implementation of that language also conformed automatically to this standard.

1.6 Word usage 1.6.0

In this standard three words are used to differentiate between different levels of requirements and
optionality, as follows:

― may indicates a course of action permissible within the limits of the standard with no implied
preference (“may” means “is permitted to”)

― shall indicates mandatory requirements strictly to be followed in order to conform to the standard
and from which no deviation is permitted (“shall” means “is required to”)

― should indicates that among several possibilities, one is recommended as particularly suitable,
without mentioning or excluding others; or that a certain course of action is preferred but not
necessarily required; or that (in the negative form) a certain course of action is deprecated but not
prohibited (“should” means “is recommended to”).

Further:

― might indicates the possibility of a situation that could occur, with no implication of the likelihood
of that situation (“might” means “could possibly”)

― see followed by a number is a cross-reference to the clause or subclause of this standard identified
by that number

― NOTE introduces text that is informative (that is, is not a requirement of this standard).

2
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

2. Definitions, abbreviations, and acronyms 2.0

2.1 Definitions 2.1.0

For the purposes of this standard, the following terms and definitions apply.

2.1.1 applicable attribute: The value of an attribute governing a particular instance of execution of a
computational operation of this standard. Languages specify how the applicable attribute is determined.

2.1.2 arithmetic format: A floating-point format that can be used to represent floating-point operands or
results for the operations of this standard.

2.1.3 attribute: An implicit parameter to operations of this standard, which a user might statically set in a
programming language by specifying a constant value. The term attribute might refer to the parameter (as in
“rounding-direction attribute”) or its value (as in “roundTowardZero attribute”).

2.1.4 basic format: One of five floating-point representations, three binary and two decimal, whose
encodings are specified by this standard, and which can be used for arithmetic. One or more of the basic
formats is implemented in any conforming implementation.

2.1.5 biased exponent: The sum of the exponent and a constant (bias) chosen to make the biased
exponent’s range nonnegative.

2.1.6 binary floating-point number: A floating-point number with radix two.

2.1.7 block: A language-defined syntactic unit for which a user can specify attributes. Language standards
might provide means for users to specify attributes for blocks of varying scopes, even as large as an entire
program and as small as a single operation.

2.1.8 canonical encoding: The preferred encoding of a floating-point representation in a format. Applied to
declets, significands of finite numbers, infinities, and NaNs, especially in decimal formats.

2.1.9 canonicalized number: A floating-point number whose encoding (if there is one) is canonical.

2.1.10 cohort: The set of all floating-point representations that represent a given floating-point number in a
given floating-point format. In this context −0 and +0 are considered distinct and are in different cohorts.

2.1.11 computational operation: An operation that can signal floating-point exceptions, or that produces
floating-point results, or that produces integer results by rounding them to fit destination formats according
to a rounding direction rule. Comparisons are computational operations.

2.1.12 correct rounding: This standard’s method of converting an infinitely precise result to a floating-
point number, as determined by the applicable rounding direction. A floating-point number so obtained is
said to be correctly rounded.

2.1.13 decimal floating-point number: A floating-point number with radix ten.

2.1.14 declet: An encoding of three decimal digits into ten bits using the densely-packed-decimal encoding
scheme. Of the 1024 possible declets, 1000 canonical declets are produced by computational operations,
while 24 non-canonical declets are not produced by computational operations, but are accepted in operands.

2.1.15 denormalized number: See: subnormal number.

2.1.16 destination: The location for the result of an operation upon one or more operands. A destination
might be either explicitly designated by the user or implicitly supplied by the system (for example,
intermediate results in subexpressions or arguments for procedures). Some languages place the results of
intermediate calculations in destinations beyond the user’s control; nonetheless, this standard defines the
result of an operation in terms of that destination’s format and the operands’ values.

2.1.17 dynamic mode: An optional method of dynamically setting attributes by means of operations of this
standard to set, test, save, and restore them.

2.1.18 exception: An event that occurs when an operation on some particular operands has no outcome
suitable for every reasonable application. That operation might signal one or more exceptions by invoking
the default or, if explicitly requested, a language-defined alternate handling. Note that event, exception, and
signal are defined in diverse ways in different programming environments.

3
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

2.1.19 exponent: The component of a finite floating-point representation that signifies the integer power to
which the radix is raised in determining the value of that floating-point representation. The exponent e is
used when the significand is regarded as an integer digit and fraction field, and the exponent q is used when
the significand is regarded as an integer; e = q + p − 1 where p is the precision of the format in digits.

2.1.20 extendable precision format: A format with precision and range that are defined under user control.

2.1.21 extended precision format: A format that extends a supported basic format by providing wider
precision and range.

2.1.22 external character sequence: A representation of a floating-point datum as a sequence of
characters, including the character sequences in floating-point literals in program text.

2.1.23 flag: See: status flag.

2.1.24 floating-point datum: A floating-point number or non-number (NaN) that is representable in a
floating-point format. In this standard, a floating-point datum is not always distinguished from its
representation or encoding.

2.1.25 floating-point number: A finite or infinite number that is representable in a floating-point format. A
floating-point datum that is not a NaN. All floating-point numbers, including zeros and infinities, are signed.

2.1.26 floating-point representation: An unencoded member of a floating-point format, representing a
finite number, a signed infinity, a quiet NaN, or a signaling NaN. A representation of a finite number has
three components: a sign, an exponent, and a significand; its numerical value is the signed product of its
significand and its radix raised to the power of its exponent.

2.1.27 format: A set of representations of numerical values and symbols, perhaps accompanied by an
encoding.

2.1.28 fusedMultiplyAdd: The operation fusedMultiplyAdd(x, y, z) computes (x × y) + z as if with un-
bounded range and precision, rounding only once to the destination format.

2.1.29 generic operation: An operation of this standard that can take operands of various formats, for
which the formats of the results might depend on the formats of the operands.

2.1.30 homogeneous operation: An operation of this standard that takes operands and returns results all in
the same format.

2.1.31 implementation-defined: Behavior defined by a specific implementation of a specific programming
environment conforming to this standard.

2.1.32 integer format: A format not defined in this standard that represents a subset of the integers and
perhaps additional values representing infinities, NaNs, or negative zeros.

2.1.33 interchange format: A format that has a specific fixed-width encoding defined in this standard.

2.1.34 language-defined: Behavior defined by a programming language standard supporting this standard.

2.1.35 NaN: not a number — a symbolic floating-point datum. There are two kinds of NaN representations:
quiet and signaling. Most operations propagate quiet NaNs without signaling exceptions, and signal the
invalid operation exception when given a signaling NaN operand.

2.1.36 narrower/wider format: If the set of floating-point numbers of one format is a proper subset of
another format, the first is called narrower and the second wider. The wider format might have greater
precision, range, or (usually) both.

2.1.37 non-computational operation: An operation that is not computational.

2.1.38 normal number: For a particular format, a finite non-zero floating-point number with magnitude
greater than or equal to a minimum b emin value, where b is the radix. Normal numbers can use the full
precision available in a format. In this standard, zero is neither normal nor subnormal.

2.1.39 not a number: See: NaN.

2.1.40 payload: The diagnostic information contained in a NaN, encoded in part of its trailing significand
field.

4
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

2.1.41 precision: The maximum number p of significant digits that can be represented in a format, or the
number of digits to that a result is rounded.

2.1.42 preferred exponent: For the result of a decimal operation, the value of the exponent q which
preserves the quantum of the operands when the result is exact.

2.1.43 preferredWidth method: A method used by a programming language to determine the destination
formats for generic operations and functions. Some preferredWidth methods take advantage of the extra
range and precision of wide formats without requiring the program to be written with explicit conversions.

2.1.44 quantum: The quantum of a finite floating-point representation is the value of a unit in the last
position of its significand. This is equal to the radix raised to the exponent q, which is used when the
significand is regarded as an integer.

2.1.45 quiet operation: An operation that never signals any floating-point exception.

2.1.46 radix: The base for the representation of binary or decimal floating-point numbers, two or ten.

2.1.47 result: The floating-point representation or encoding that is delivered to the destination.

2.1.48 signal: When an operation on some particular operands has no outcome suitable for every reasonable
application, that operation might signal one or more exceptions by invoking the default handling or, if
explicitly requested, a language-defined alternate handling selected by the user.

2.1.49 significand: A component of a finite floating-point number containing its significant digits. The
significand can be thought of as an integer, a fraction, or some other fixed-point form, by choosing an
appropriate exponent offset. A decimal or subnormal binary significand can also contain leading zeros.

2.1.50 status flag: A variable that can take two states, raised or lowered. When raised, a status flag might
convey additional system-dependent information, possibly inaccessible to some users. The operations of
this standard, when exceptional, can as a side effect raise some of the following status flags: inexact,
underflow, overflow, divideByZero, and invalid operation.

2.1.51 subnormal number: In a particular format, a non-zero floating-point number with magnitude less
than the magnitude of that format’s smallest normal number. A subnormal number does not use the full
precision available to normal numbers of the same format.

2.1.52 supported format: A floating-point format provided in the programming environment and
implemented in conformance with the requirements of this standard. Thus, a programming environment
might provide more formats than it supports, as only those implemented in accordance with the standard are
said to be supported. Also, an integer format is said to be supported if conversions between that format and
supported floating-point formats are provided in conformance with this standard.

2.1.53 trailing significand field: A component of an encoded binary or decimal floating-point format
containing all the significand digits except the leading digit. In these formats, the biased exponent or
combination field encodes or implies the leading significand digit.

2.1.54 user: Any person, hardware, or program not itself specified by this standard, having access to and
controlling those operations of the programming environment specified in this standard.

2.1.55 width of an operation: The format of the destination of an operation specified by this standard; it
will be one of the supported formats provided by an implementation in conformance to this standard.

2.2 Abbreviations and acronyms 2.2.0

LSB least significant bit
MSB most significant bit
NaN not a number
qNaN quiet NaN
sNaN signaling NaN

5
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

3. Floating-point formats 3.0

3.1 Overview 3.1.0

3.1.1 Formats 3.1.1.0

This clause defines floating-point formats, which are used to represent a finite subset of real numbers (see
3.2). Formats are characterized by their radix, precision, and exponent range, and each format can represent
a unique set of floating-point data (see 3.3).

All formats can be supported as arithmetic formats; that is, they may be used to represent floating-point
operands or results for the operations described in later clauses of this standard.

Specific fixed-width encodings for binary and decimal formats are defined in this clause for a subset of the
formats (see 3.4 and 3.5). These interchange formats are identified by their size (see 3.6) and can be used
for the exchange of floating-point data between implementations.

Five basic formats are defined in this clause:

― Three binary formats, with encodings in lengths of 32, 64, and 128 bits.
― Two decimal formats, with encodings in lengths of 64 and 128 bits.

Additional arithmetic formats are recommended for extending these basic formats (see 3.7).

The choice of which of this standard’s formats to support is language-defined or, if the relevant language
standard is silent or defers to the implementation, implementation-defined. The names used for formats in
this standard are not necessarily those used in programming environments.

3.1.2 Conformance 3.1.2.0

A conforming implementation of any supported format shall provide means to initialize that format and
shall provide conversions between that format and all other supported formats.

A conforming implementation of a supported arithmetic format shall provide all the operations of this
standard defined in Clause 5, for that format.

A conforming implementation of a supported interchange format shall provide means to read and write that
format using a specific encoding defined in this clause, for that format.

A programming environment conforms to this standard, in a particular radix, by implementing one or more
of the basic formats of that radix as both a supported arithmetic format and a supported interchange format.

6
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

3.2 Specification levels 3.2.0

Floating-point arithmetic is a systematic approximation of real arithmetic, as illustrated in Table 3.1.
Floating-point arithmetic can only represent a finite subset of the continuum of real numbers. Consequently
certain properties of real arithmetic, such as associativity of addition, do not always hold for floating-point
arithmetic.

Table 3.1 — Relationships between different specification levels for a particular format 3.2.0

Level 1 {−∞ … 0 … +∞} Extended real numbers.

many-to-one ↓ rounding ↑ projection (except for NaN)

Level 2 {−∞ … −0} ∪ ∪ {+0 … +∞} NaN Floating-point data — an
algebraically closed system.

one-to-many ↓ representation specification ↑ many-to-one

Level 3 (sign, exponent, significand) ∪ {−∞, +∞} ∪ qNaN ∪
sNaN

Representations of floating-
point data.

one-to-many ↓ encoding for representations of floating-point data ↑ many-to-one

Level 4 0111000… Bit strings.

The mathematical structure underpinning the arithmetic in this standard is the extended reals, that is, the set
of real numbers together with positive and negative infinity. For a given format, the process of rounding
(see 4) maps an extended real number to a floating-point number included in that format. A floating-point
datum, which can be a signed zero, finite non-zero number, signed infinity, or a NaN (not-a-number), can
be mapped to one or more representations of floating-point data in a format.

The representations of floating-point data in a format consist of:

― triples (sign, exponent, significand); in radix b, the floating-point number represented by a triple is
(−1) sign × b exponent × significand

― +∞, −∞
― qNaN (quiet), sNaN (signaling).

An encoding maps a representation of a floating-point datum to a bit string. An encoding might map some
representations of floating-point data to more than one bit string. Multiple NaN bit strings should be used to
store retrospective diagnostic information (see 6.2).

3.3 Sets of floating-point data 3.3.0

This subclause specifies the sets of floating-point data representable within all floating-point formats; the
encodings for specific representations of floating-point data in interchange formats are defined in 3.4 and
3.5, and the parameters for interchange formats are defined in 3.6.

The set of finite floating-point numbers representable within a particular format is determined by the
following integer parameters:

― b = the radix, 2 or 10
― p = the number of digits in the significand (precision)
― emax = the maximum exponent e
― emin = the minimum exponent e

emin shall be 1 − emax for all formats.

The values of these parameters for each basic format are given in Table 3.2, in which each format is
identified by its radix and the number of bits in its encoding. Constraints on these parameters for extended
and extendable precision formats are given in 3.7.

7
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

Within each format, the following floating-point data shall be represented:

― Signed zero and non-zero floating-point numbers of the form (−1) s × b e × m, where
― s is 0 or 1.
― e is any integer emin ≤ e ≤ emax..
― m is a number represented by a digit string of the form

d0 • d1 d2…dp −1 where di is an integer digit 0 ≤ di < b (therefore 0 ≤ m < b).
― Two infinities, +∞ and −∞.
― Two NaNs, qNaN (quiet) and sNaN (signaling).

These are the only floating-point data represented.

In the foregoing description, the significand m is viewed in a scientific form, with the radix point
immediately following the first digit. It is also convenient for some purposes to view the significand as an
integer; in which case the finite floating-point numbers are described thus:

― Signed zero and non-zero floating-point numbers of the form (−1)s ×b q ×c, where
― s is 0 or 1.
― q is any integer emin ≤ q + p − 1 ≤ emax.
― c is a number represented by a digit string of the form

d0 d1 d2…dp −1 where di is an integer digit 0 ≤ di < b (c is therefore an integer with 0 ≤ c < b p).

This view of the significand as an integer c, with its corresponding exponent q, describes exactly the same
set of zero and non-zero floating-point numbers as the view in scientific form. (For finite floating-point
numbers, e = q + p − 1 and m = c × b1− p.)

The smallest positive normal floating-point number is b emin and the largest is b emax×(b − b1− p). The non-zero
floating-point numbers for a format with magnitude less than b emin are called subnormal because their
magnitudes lie between zero and the smallest normal magnitude. They always have fewer than p significant
digits. Every finite floating-point number is an integral multiple of the smallest subnormal magnitude
b emin × b1−p.

For a floating-point number that has the value zero, the sign bit s provides an extra bit of information.
Although all formats have distinct representations for +0 and −0, the sign of a zero is significant in some
circumstances, such as division by zero, but not in others (see 6.3). Binary interchange formats have just
one representation each for +0 and −0, but decimal formats have many. In this standard, 0 and ∞ are written
without a sign when the sign is not important.

Table 3.2 — Parameters defining basic format floating-point numbers 0

Binary format (b=2) Decimal format (b=10)

parameter binary32 binary64 binary128 decimal64 decimal 128

p, digits 24 53 113 16 34

emax +127 +1023 +16383 +384 +6144

8
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

3.4 Binary interchange format encodings 3.4.0

Each floating-point number has just one encoding in a binary interchange format. To make the encoding
unique, in terms of the parameters in 3.3, the value of the significand m is maximized by decreasing e until
either e = emin or m ≥ 1. After this process is done, if e = emin and 0 < m < 1, the floating-point number is
subnormal. Subnormal numbers (and zero) are encoded with a reserved biased exponent value.

Representations of floating-point data in the binary interchange formats are encoded in k bits in the
following three fields ordered as shown in Figure 3.1:

a) 1-bit sign S
b) w-bit biased exponent E = e + bias
c) (t = p − 1)-bit trailing significand field digit string T = d1 d2…dp −1; the leading bit of the significand,

d0, is implicitly encoded in the biased exponent E.

Figure 3.1 — Binary interchange floating-point format 3.4.0

The values of k, p, t, w, and bias for binary interchange formats are listed in Table 3.5 (see 3.6).

The range of the encoding’s biased exponent E shall include:

― every integer between 1 and 2w − 2, inclusive, to encode normal numbers
― the reserved value 0 to encode ±0 and subnormal numbers
― the reserved value 2w − 1 to encode ±∞ and NaNs.

The representation r of the floating-point datum, and value v of the floating-point datum represented, are
inferred from the constituent fields as follows:

a) If E = 2w − 1 and T ≠ 0, then r is qNaN or sNaN and v is NaN regardless of S (see 6.2.1).
b) If E = 2w − 1 and T = 0 , then r and v = (−1) S × (+∞).
c) If 1 ≤ E ≤ 2w− 2, then r is (S, (E−bias), (1 + 21− p × T));

the value of the corresponding floating-point number is v = (−1) S × 2 E−bias × (1 + 21− p × T);
thus normal numbers have an implicit leading significand bit of 1.

d) If E = 0 and T ≠ 0, then r is (S, emin, (0 + 21− p × T));
the value of the corresponding floating-point number is v = (−1) S × 2 emin × (0 + 21− p × T);
thus subnormal numbers have an implicit leading significand bit of 0.

e) If E = 0 and T = 0 , then r is (S, emin, 0) and v = (−1) S × (+0) (signed zero, see 6.3).

NOTE — Where k is either 64 or a multiple of 32 and ≥ 128, for these encodings all of the following are
true (where round() rounds to the nearest integer):

k = 1 + w + t = w + p = 32 × ceiling((p + round(4 × log2(p + round(4 × log2(p)) − 13)) − 13) /32)
w = k – t − 1 = k − p = round(4 × log2(k)) − 13
t = k – w − 1 = p − 1 = k − round(4 × log2(k)) + 12
p = k − w = t + 1 = k − round(4 × log2(k)) + 13

emax = bias = 2(w −1) − 1
emin = 1 − emax = 2 − 2(w −1).

9
Copyright © 2008 IEEE. All rights reserved.

d1..dp-1E0....................Ew-1

1 bit MSB w bits t = p – 1 bits LSBMSBLSB

T
(trailing significand field)

E
(biased exponent)

S
(sign)

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

3.5 Decimal interchange format encodings 3.5.0

3.5.1 Cohorts 3.5.1.0

Unlike in a binary floating-point format, in a decimal floating-point format a number might have multiple
representations. The set of representations a floating-point number maps to is called the floating-point
number’s cohort; the members of a cohort are distinct representations of the same floating-point number.
For example, if c is a multiple of 10 and q is less than its maximum allowed value, then (s, q, c) and (s,
q + 1, c / 10) are two representations for the same floating-point number and are members of the same cohort.

While numerically equal, different members of a cohort can be distinguished by the decimal-specific
operations (see 5.3.2, 5.5.2, and 5.7.3). The cohorts of different floating-point numbers might have different
numbers of members. If a finite non-zero number’s representation has n decimal digits from its most
significant non-zero digit to its least significant non-zero digit, the representation’s cohort will have at most
p − n + 1 members where p is the number of digits of precision in the format.

For example, a one-digit floating-point number might have up to p different representations while a p-digit
floating-point number with no trailing zeros has only one representation. (An n-digit floating-point number
might have fewer than p − n + 1 members in its cohort if it is near the extremes of the format’s exponent
range.) A zero has a much larger cohort: the cohort of +0 contains a representation for each exponent, as
does the cohort of −0.

For decimal arithmetic, besides specifying a numerical result, the arithmetic operations also select a
member of the result’s cohort according to 5.2. Decimal applications can make use of the additional
information cohorts convey.

3.5.2 Encodings 3.5.2.0

Representations of floating-point data in the decimal interchange formats are encoded in k bits in the
following three fields, whose detailed layouts and canonical (preferred) encodings are described below.

a) 1-bit sign S.
b) A w + 5 bit combination field G encoding classification and, if the encoded datum is a finite

number, the exponent q and four significand bits (1 or 3 of which are implied). The biased
exponent E is a w + 2 bit quantity q + bias, where the value of the first two bits of the biased
exponent taken together is either 0, 1, or 2.

c) A t-bit trailing significand field T that contains J × 10 bits and contains the bulk of the significand.
When this field is combined with the leading significand bits from the combination field, the
format encodes a total of p = 3 × J + 1 decimal digits.

Figure 3.2 — Decimal interchange floating-point formats 3.5.2.0

The values of k, p, t, w, and bias for decimal interchange formats are listed in Table 3.6 (see 3.6).

The representation r of the floating-point datum, and value v of the floating-point datum represented, are
inferred from the constituent fields as follows:

a) If G0 through G4 are 11111, then v is NaN regardless of S. Furthermore, if G5 is 1, then r is sNaN;
otherwise r is qNaN. The remaining bits of G are ignored, and T constitutes the NaN’s payload,
which can be used to distinguish various NaNs.
The NaN payload is encoded similarly to finite numbers described below, with G treated as though
all bits were zero. The payload corresponds to the significand of finite numbers, interpreted as an

10
Copyright © 2008 IEEE. All rights reserved.

S
(sign)

t = J × 10 bitsw+5 bits

 decimal encoding: J declets give 3×J = p – 1 digits
binary encoding: t bits give values from 0 through 2t–1

G0...................Gw+4

1 bit MSB LSBMSBLSB

T
(trailing significand field)

G
(combination field)

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

integer with a maximum value of 10 (3×J) − 1, and the exponent field is ignored (it is treated as if it
were zero). A NaN is in its preferred (canonical) representation if the bits G6 through Gw + 4 are zero
and the encoding of the payload is canonical.

b) If G0 through G4 are 11110 then r and v = (−1) S × (+∞). The values of the remaining bits in G, and
T, are ignored. The two canonical representations of infinity have bits G5 through Gw +4 = 0, and T =
0.

c) For finite numbers, r is (S, E − bias, C) and v = (−1) S × 10 (E−bias) × C, where C is the concatenation of
the leading significand digit or bits from the combination field G and the trailing significand field
T, and where the biased exponent E is encoded in the combination field. The encoding within these
fields depends on whether the implementation uses the decimal or the binary encoding for the
significand.
1) If the implementation uses the decimal encoding for the significand, then the least significant

w bits of the exponent are G5 through Gw +4. The most significant two bits of the biased
exponent and the decimal digit string d0 d1…dp −1 of the significand are formed from bits G0

through G4 and T as follows:
i) When the most significant five bits of G are 110xx or 1110x, the leading significand digit

d0 is 8 + G4, a value 8 or 9, and the leading biased exponent bits are 2G2 + G3 , a value 0, 1,
or 2.

ii) When the most significant five bits of G are 0xxxx or 10xxx, the leading significand digit
d0 is 4G2 + 2G3 + G4, a value in the range 0 through 7, and the leading biased exponent bits
are 2G0 + G1, a value 0, 1, or 2. Consequently if T is 0 and the most significant five bits of
G are 00000, 01000, or 10000, then v = (−1) S × (+0).

The p −1 = 3 × J decimal digits d1…dp −1 are encoded by T, which contains J declets encoded in
densely-packed decimal.
A canonical significand has only canonical declets, as shown in Tables 3.3 and 3.4.
Computational operations produce only the 1000 canonical declets, but also accept the 24
non-canonical declets in operands.

2) Alternatively, if the implementation uses the binary encoding for the significand, then:
i) If G0 and G1 together are one of 00, 01, or 10, then the biased exponent E is formed from

G0 through Gw +1 and the significand is formed from bits Gw +2 through the end of the
encoding (including T).

ii) If G0 and G1 together are 11 and G2 and G3 together are one of 00, 01, or 10, then the
biased exponent E is formed from G2 through Gw +3 and the significand is formed by
prefixing the 4 bits (8 + Gw +4) to T.

The maximum value of the binary-encoded significand is the same as that of the
corresponding decimal-encoded significand; that is, 10 (3 × J + 1) −1 (or 10 (3 × J) −1 when T is used
as the payload of a NaN). If the value exceeds the maximum, the significand c is non-
canonical and the value used for c is zero.

Computational operations generally produce only canonical significands, and always accept non-
canonical significands in operands.

NOTE — Where k is a positive multiple of 32, for these encodings all of the following are true:

k = 1 + 5 + w + t = 32 × ceiling((p + 2) /9)
w = k – t − 6 = k /16 + 4
t = k – w − 6 = 15 × k /16 − 10
p = 3 × t /10 + 1 = 9 × k /32 − 2

emax = 3 × 2 (w

−1)

emin = 1 − emax
bias = emax + p − 2.

11
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

Decoding densely-packed decimal: Table 3.3 decodes a declet, with 10 bits b(0) to b(9), into 3 decimal
digits d(1), d(2), d(3). The first column is in binary and an “x” denotes a “don’t care” bit. Thus all 1024
possible 10-bit patterns shall be accepted and mapped into 1000 possible 3-digit combinations with some
redundancy.

Table 3.3 — Decoding 10-bit densely-packed decimal to 3 decimal digits 0

b(6), b(7), b(8), b(3), b(4) d(1) d(2) d(3)

0 x x x x 4b(0) + 2b(1) + b(2) 4b(3) + 2b(4) + b(5) 4b(7) + 2b(8) + b(9)

1 0 0 x x 4b(0) + 2b(1) + b(2) 4b(3) + 2b(4) + b(5) 8 + b(9)

1 0 1 x x 4b(0) + 2b(1) + b(2) 8 + b(5) 4b(3) + 2b(4) + b(9)

1 1 0 x x 8 + b(2) 4b(3) + 2b(4) + b(5) 4b(0) + 2b(1) + b(9)

1 1 1 0 0 8 + b(2) 8 + b(5) 4b(0) + 2b(1) + b(9)

1 1 1 0 1 8 + b(2) 4b(0) + 2b(1) + b(5) 8 + b(9)

1 1 1 1 0 4b(0) + 2b(1) + b(2) 8 + b(5) 8 + b(9)

1 1 1 1 1 8 + b(2) 8 + b(5) 8 + b(9)

Encoding densely-packed decimal: Table 3.4 encodes 3 decimal digits d(1), d(2), and d(3), each having 4 bits
which can be expressed by a second subscript d(1,0:3), d(2,0:3), and d(3,0:3), where bit 0 is the most significant
and bit 3 the least significant, into a declet, with 10 bits b(0) to b(9). Computational operations generate only
the 1000 canonical 10-bit patterns defined by Table 3.4.

Table 3.4 — Encoding 3 decimal digits to 10-bit densely-packed decimal 0

d(1,0), d(2,0), d(3,0) b(0), b(1), b(2) b(3), b(4), b(5) b(6) b(7), b(8), b(9)

0 0 0 d(1,1:3) d(2,1:3) 0 d(3,1:3)

0 0 1 d(1,1:3) d(2,1:3) 1 0, 0, d(3,3)

0 1 0 d(1,1:3) d(3,1:2), d(2,3) 1 0, 1, d(3,3)

0 1 1 d(1,1:3) 1, 0, d(2,3) 1 1, 1, d(3,3)

1 0 0 d(3,1:2), d(1,3) d(2,1:3) 1 1, 0, d(3,3)

1 0 1 d(2,1:2), d(1,3) 0, 1, d(2,3) 1 1, 1, d(3,3)

1 1 0 d(3,1:2), d(1,3) 0, 0, d(2,3) 1 1, 1, d(3,3)

1 1 1 0, 0, d(1,3) 1, 1, d(2,3) 1 1, 1, d(3,3)

The 24 non-canonical patterns of the form 01x11x111x, 10x11x111x, or 11x11x111x (where an “x”
denotes a “don’t care” bit) are not generated in the result of a computational operation. However, as listed
in Table 3.3, these 24 bit patterns do map to values in the range 0 through 999. The bit pattern in a NaN
trailing significand field can affect how the NaN is propagated (see 6.2).

12
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

3.6 Interchange format parameters 3.6.0

Interchange formats support the exchange of floating-point data between implementations. In each radix,
the precision and range of an interchange format is defined by its size; interchange of a floating-point datum
of a given size is therefore always exact with no possibility of overflow or underflow.

This standard defines binary interchange formats of widths 16, 32, 64, and 128 bits, and in general for any
multiple of 32 bits of at least 128 bits. Decimal interchange formats are defined for any multiple of 32 bits
of at least 32 bits.

The parameters p and emax for every interchange format width are shown in Table 3.5 for binary
interchange formats and in Table 3.6 for decimal interchange formats. The encodings for the interchange
formats are as described in 3.4 and 3.5.2; the encoding parameters for each interchange format width are
also shown in Tables 3.5 and 3.6.

Table 3.5 — Binary interchange format parameters 0

Parameter binary16 binary32 binary64 binary128 binary{k} (k ≥ 128)

k, storage width in bits 16 32 64 128 multiple of 32

p, precision in bits 11 24 53 113 k – round(4 × log2 (k)) + 13

emax, maximum exponent e 15 127 1023 16383 2 (k– p –1) – 1

Encoding parameters

bias, E − e 15 127 1023 16383 emax

sign bit 1 1 1 1 1

w, exponent field width in bits 5 8 11 15 round(4 × log2 (k)) – 13

t, trailing significand field width in bits 10 23 52 112 k – w – 1

k, storage width in bits 16 32 64 128 1 + w + t

The function round() in Table 3.5 rounds to the nearest integer.

For example, binary256 would have p = 237 and emax = 262143.

Table 3.6 — Decimal interchange format parameters 0

Parameter decimal32 decimal64 decimal 128 decimal{k} (k ≥ 32)

k, storage width in bits 32 64 128 multiple of 32

p, precision in digits 7 16 34 9 × k / 32 – 2

emax 96 384 6144 3 × 2 (k /16 + 3)

Encoding parameters

bias, E − q 101 398 6176 emax + p – 2

sign bit 1 1 1 1

w +5, combination field width in bits 11 13 17 k / 16 + 9

t, trailing significand field width in bits 20 50 110 15 × k / 16 – 10

k, storage width in bits 32 64 128 1 + 5 + w + t

For example, decimal256 would have p = 70 and emax = 1572864.

13
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

3.7 Extended and extendable precisions 3.7.0

Extended and extendable precision formats are recommended for extending the precisions used for
arithmetic beyond the basic formats. Specifically:

― An extended precision format is a format that extends a supported basic format with both wider
precision and wider range.

― An extendable precision format is a format with a precision and range that are defined under user
control.

These formats are characterized by the parameters b, p, and emax, which may match those of an interchange
format and shall:

― provide all the representations of floating-point data defined in terms of those parameters in 3.2
and 3.3

― provide all the operations of this standard, as defined in Clause 5, for that format.

This standard does not require an implementation to provide any extended or extendable precision format.
Any encodings for these formats are implementation-defined, but should be fixed width and may match
those of an interchange format.

Language standards should define mechanisms supporting extendable precision for each supported radix.
Language standards supporting extendable precision shall permit users to specify p and emax. Language
standards shall also allow the specification of an extendable precision by specifying p alone; in this case
emax shall be defined by the language standard to be at least 1000 × p when p is ≥ 237 bits in a binary
format or p is ≥ 51 digits in a decimal format.

Language standards or implementations should support an extended precision format that extends the widest
basic format that is supported in that radix. Table 3.7 specifies the minimum precision and exponent range
of the extended precision format for each basic format.

Table 3.7 — Extended format parameters for floating-point numbers 0

Extended formats associated with:

Parameter binary32 binary64 binary128 decimal64 decimal 128

p digits ≥ 32 64 128 22 40

emax ≥ 1023 16383 65535 6144 24576

NOTE 1 — For extended formats, the minimum exponent range is that of the next wider basic format, if
there is one, while the minimum precision is intermediate between a given basic format and the next wider
basic format.

NOTE 2 — For interchange of binary floating-point data, the width k in bits of the smallest standard format
that will allow the encoding of a significand of at least p bits is given by:

k = 32 × ceiling((p + round(4 × log2(p + round(4 × log2(p)) − 13)) − 13) /32), where round() rounds to
the nearest integer and p ≥ 113; for smaller values of p, see Table 3.5.

For interchange of decimal floating-point data, the width k in bits of the smallest standard format that will
allow the encoding of a significand of at least p digits is given by:

k = 32 × ceiling((p + 2) /9), where p ≥ 1.

In both cases the chosen format might have a larger precision (see 3.4 and 3.5.2).

14
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

4. Attributes and rounding 4.0

4.1 Attribute specification 4.1.0

An attribute is logically associated with a program block to modify its numerical and exception semantics.
A user can specify a constant value for an attribute parameter.

Some attributes have the effect of an implicit parameter to most individual operations of this standard;
language standards shall specify

― rounding-direction attributes (see 4.3)

and should specify

― alternate exception handling attributes (see 8).

Other attributes change the mapping of language expressions into operations of this standard; language
standards that permit more than one such mapping should provide support for:

― preferredWidth attributes (see 10.3)
― value-changing optimization attributes (see 10.4)
― reproducibility attributes (see 11).

For attribute specification, the implementation shall provide language-defined means, such as compiler
directives, to specify a constant value for the attribute parameter for all standard operations in a block; the
scope of the attribute value is the block with which it is associated. Language standards shall provide for
constant specification of the default and each specific value of the attribute.

4.2 Dynamic modes for attributes 4.2.0

Attributes in this standard shall be supported with the constant specification of 4.1. Particularly to support
debugging, language standards should also support dynamic-mode specification of attributes.

With dynamic-mode specification, a user can specify that the attribute parameter assumes the value of a
dynamic-mode variable whose value might not be known until program execution. This standard does not
specify the underlying implementation mechanisms for constant attributes or dynamic modes.

For dynamic-mode specification, the implementation shall provide language-defined means to specify that
the attribute parameter assumes the value of a dynamic-mode variable for all standard operations within the
scope of the dynamic-mode specification in a block. The implementation initializes a dynamic-mode
variable to the default value for the dynamic mode. Within its language-defined (dynamic) scope, changes
to the value of a dynamic-mode variable are under the control of the user via the operations in 9.3.1 and .

The following aspects of dynamic-mode variables are language-defined; language standards may explicitly
defer the definitions to implementations:

― The precedence of static attribute specifications and dynamic-mode assignments.
― The effect of changing the value of the dynamic-mode variable in an asynchronous event, such as

in another thread or signal handler.
― Whether the value of the dynamic-mode variable can be determined by non-programmatic means,

such as a debugger.

NOTE — A constant value for an attribute can be specified and meet the requirements of 4.1 by a dynamic
mode specification with appropriate scope of that constant value.

15
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

4.3 Rounding-direction attributes 4.3.0

Rounding takes a number regarded as infinitely precise and, if necessary, modifies it to fit in the
destination’s format while signaling the inexact exception, underflow, or overflow when appropriate (see 7).
Except where stated otherwise, every operation shall be performed as if it first produced an intermediate
result correct to infinite precision and with unbounded range, and then rounded that result according to one
of the attributes in this clause.

The rounding-direction attribute affects all computational operations that might be inexact. Inexact numeric
floating-point results always have the same sign as the unrounded result.

The rounding-direction attribute affects the signs of exact zero sums (see 6.3), and also affects the
thresholds beyond which overflow (see 7.4) and underflow (see 7.5) are signaled.

Implementations supporting both decimal and binary formats shall provide separate rounding-direction
attributes for binary and decimal, the binary rounding direction and the decimal rounding direction.
Operations returning results in a floating-point format shall use the rounding-direction attribute associated
with the radix of the results. Operations converting from an operand in a floating-point format to a result in
integer format or to an external character sequence (see 5.8 and 5.12) shall use the rounding-direction
attribute associated with the radix of the operand.

NaNs are not rounded (but see 6.2.3).

4.3.1 Rounding-direction attributes to nearest 4.3.1.0

In the following two rounding-direction attributes, an infinitely precise result with magnitude at least
b emax (b − ½ b 1−p) shall round to ∞ with no change in sign; here emax and p are determined by the destination
format (see 3.3). With:

― roundTiesToEven, the floating-point number nearest to the infinitely precise result shall be
delivered; if the two nearest floating-point numbers bracketing an unrepresentable infinitely
precise result are equally near, the one with an even least significant digit shall be delivered

― roundTiesToAway, the floating-point number nearest to the infinitely precise result shall be
delivered; if the two nearest floating-point numbers bracketing an unrepresentable infinitely
precise result are equally near, the one with larger magnitude shall be delivered.

4.3.2 Directed rounding attributes 4.3.2.0

Three other user-selectable rounding-direction attributes are defined, the directed rounding attributes
roundTowardPositive, roundTowardNegative, and roundTowardZero. With:

― roundTowardPositive, the result shall be the format’s floating-point number (possibly +∞) closest
to and no less than the infinitely precise result

― roundTowardNegative, the result shall be the format’s floating-point number (possibly −∞) closest
to and no greater than the infinitely precise result

― roundTowardZero, the result shall be the format’s floating-point number closest to and no greater
in magnitude than the infinitely precise result.

4.3.3 Rounding attribute requirements 4.3.3.0

An implementation of this standard shall provide roundTiesToEven and the three directed rounding
attributes. A decimal format implementation of this standard shall provide roundTiesToAway as a user-
selectable rounding-direction attribute. The rounding attribute roundTiesToAway is not required for a
binary format implementation.

The roundTiesToEven rounding-direction attribute shall be the default rounding-direction attribute for
results in binary formats. The default rounding-direction attribute for results in decimal formats is language-
defined, but should be roundTiesToEven.

16
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

5. Operations 5.0

5.1 Overview 5.1.0

All conforming implementations of this standard shall provide the operations listed in this clause for all
supported arithmetic formats, except as stated below. Each of the computational operations that return a
numeric result specified by this standard shall be performed as if it first produced an intermediate result
correct to infinite precision and with unbounded range, and then rounded that intermediate result, if
necessary, to fit in the destination’s format (see 4 and 7). Clause 6 augments the following specifications to
cover ±0, ±∞, and NaN. Clause 7 describes default exception handling.

In this standard, operations are written as named functions; in a specific programming environment they
might be represented by operators, or by families of format-specific functions, or by operations or functions
whose names might differ from those in this standard.

Operations are broadly classified into four groups according to the kinds of results and exceptions they
produce:

― General-computational operations produce floating-point or integer results, round all results
according to Clause 4, and might signal the floating-point exceptions of Clause 7.

― Quiet-computational operations produce floating-point results and do not signal floating-point
exceptions.

― Signaling-computational operations produce no floating-point results and might signal floating-
point exceptions; comparisons are signaling-computational operations.

― Non-computational operations do not produce floating-point results and do not signal floating-
point exceptions.

Operations in the first three groups are referred to collectively as “computational operations”.

Operations are also classified in two ways according to the relationship between the result format and the
operand formats:

― homogeneous operations, in which the floating-point operands and floating-point result are all of
the same format

― formatOf operations, which indicate the format of the result, independent of the formats of the
operands.

Language standards might permit other kinds of operations and combinations of operations in expressions.
By their expression evaluation rules, language standards specify when and how such operations and
expressions are mapped into the operations of this standard. Operations (except re-encoding operations) do
not have to accept operands or produce results of differing encodings.

In the operation descriptions that follow, operand and result formats are indicated by:

― source to represent homogeneous floating-point operand formats
― source1, source2, source3 to represent non-homogeneous floating-point operand formats
― int to represent integer operand formats
― boolean to represent a value of false or true (for example, 0 or 1)
― enum to represent one of a small set of enumerated values
― logBFormat to represent a type for the destination of the logB operation and the scale exponent

operand of the scaleB operation
― integralFormat to represent the scale factor in scaled products (see 9.4)
― decimalCharacterSequence to represent a decimal character sequence
― hexCharacterSequence to represent a hexadecimal-significand character sequence
― conversionSpecification to represent a language dependent conversion specification
― decimal to represent a supported decimal floating-point type
― decimalEncoding to represent a decimal floating-point type encoded in decimal

17
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

― binaryEncoding to represent a decimal floating-point type encoded in binary
― exceptionGroup to represent a set of exceptions as a set of booleans
― flags to represent a set of status flags
― binaryRoundingDirection to represent the rounding direction for binary
― decimalRoundingDirection to represent the rounding direction for decimal
― modeGroup to represent dynamically-specifiable modes
― void to indicate that an operation has no explicit operand or has no explicit result; the operand or

result might be implicit.

formatOf indicates that the name of the operation specifies the floating-point destination format, which
might be different from the floating-point operands’ formats. There are formatOf versions of these
operations for every supported arithmetic format.

intFormatOf indicates that the name of the operation specifies the integer destination format.

In the operation descriptions that follow, languages define which of their types correspond to operands and
results called int, intFormatOf, characterSequence, or conversionSpecification. Languages with both signed
and unsigned integer types should support both signed and unsigned int and intFormatOf operands and
results.

5.2 Decimal exponent calculation 5.2.0

As discussed in 3.5, a floating-point number might have multiple representations in a decimal format.
Therefore, decimal arithmetic involves not only computing the proper numerical result but also selecting the
proper member of that floating-point number’s cohort.

Except for the quantize operation, the value of a floating-point result (and hence its cohort) is determined by
the operation and the operands’ values; it is never dependent on the representation or encoding of an
operand.

The selection of a particular representation for a floating-point result is dependent on the operands’
representations, as described below, but is not affected by their encoding.

For all computational operations except quantize and roundToIntegralExact, if the result is inexact the
cohort member of least possible exponent is used to get the maximum number of significant digits. If the
result is exact, the cohort member is selected based on the preferred exponent for a result of that operation,
a function of the exponents of the inputs. Thus for finite x, depending on the representation of zero, 0 + x
might result in a different member of x’s cohort. If the result’s cohort does not include a member with the
preferred exponent, the member with the exponent closest to the preferred exponent is used.

For quantize and roundToIntegralExact, a finite result has the preferred exponent, whether or not the result
is exact.

In the descriptions that follow, Q(x) is the exponent q of the representation of a finite floating-point number
x. If x is infinite, Q(x) is +∞.

18
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

5.3 Homogeneous general-computational operations 5.3.0

5.3.1 General operations 5.3.1.0

Implementations shall provide the following homogeneous general-computational operations for all
supported arithmetic formats; these operations shall not propagate non-canonical results. Their destination
format is indicated as sourceFormat:

― sourceFormat roundToIntegralTiesToEven(source)
sourceFormat roundToIntegralTiesToAway(source)
sourceFormat roundToIntegralTowardZero(source)
sourceFormat roundToIntegralTowardPositive(source)
sourceFormat roundToIntegralTowardNegative(source)
See 5.9 for details.
The preferred exponent is max(Q(source), 0).

― sourceFormat roundToIntegralExact(source)
See 5.9 for details.
The preferred exponent is max(Q(source), 0), even when the inexact exception is signaled.

― sourceFormat nextUp(source)
sourceFormat nextDown(source)

nextUp(x) is the least floating-point number in the format of x that compares greater than x. If x is
the negative number of least magnitude in x’s format, nextUp(x) is −0. nextUp(±0) is the positive
number of least magnitude in x’s format. nextUp(+∞) is +∞, and nextUp(−∞) is the finite negative
number largest in magnitude. When x is NaN, then the result is according to 6.2. nextUp(x) is
quiet except for sNaNs.

The preferred exponent is the least possible.
nextDown(x) is −nextUp(−x).

― sourceFormat remainder(source, source)

When y ≠ 0, the remainder r = remainder(x, y) is defined for finite x and y regardless of the
rounding-direction attribute by the mathematical relation r = x − y × n , where n is the integer nearest
the exact number x/y ; whenever | n − x/y | = ½ , then n is even. Thus, the remainder is always exact.
If r = 0, its sign shall be that of x. remainder(x, ∞) is x for finite x.

The preferred exponent is min(Q(x), Q(y)).
― sourceFormat minNum(source, source)

sourceFormat maxNum(source, source)
sourceFormat minNumMag(source, source)
sourceFormat maxNumMag(source, source)

minNum(x, y) is the canonicalized number x if x < y, y if y < x, the canonicalized number if one
operand is a number and the other a quiet NaN. Otherwise it is either x or y, canonicalized (this
means results might differ among implementations). When either x or y is a signalingNaN, then the
result is according to 6.2.

maxNum(x, y) is the canonicalized number y if x < y, x if y < x, the canonicalized number if one
operand is a number and the other a quiet NaN. Otherwise it is either x or y, canonicalized (this
means results might differ among implementations). When either x or y is a signalingNaN, then the
result is according to 6.2.

minNumMag(x, y) is the canonicalized number x if | x| < | y|, y if | y| < | x|, otherwise minNum(x, y).

maxNumMag(x, y) is the canonicalized number x if | x| > | y|, y if | y| > | x|, otherwise maxNum(x, y).

The preferred exponent is Q(x) if x is the result, Q(y) if y is the result.

19
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

5.3.2 Decimal operation 5.3.2.0

Implementations supporting decimal formats shall provide the following homogeneous general-
computational operation for all supported decimal arithmetic formats; this operation shall not propagate
non-canonical results. The destination format is indicated as sourceFormat:

― sourceFormat quantize(source, source)

For finite decimal operands x and y of the same format, quantize(x, y) is a floating-point number
in the same format that has, if possible, the same numerical value as x and the same quantum as y.
If the exponent is being increased, rounding according to the applicable rounding-direction
attribute might occur: the result is a different floating-point representation and the inexact
exception is signaled if the result does not have the same numerical value as x. If the exponent is
being decreased and the significand of the result would have more than p digits, the invalid
operation exception is signaled and the result is NaN. If one or both operands are NaN, the rules in
6.2 are followed. Otherwise if only one operand is infinite then the invalid operation exception is
signaled and the result is NaN. If both operands are infinite then the result is canonical ∞ with the
sign of x. quantize does not signal underflow or overflow.

The preferred exponent is Q(y).

5.3.3 logBFormat operations 5.3.3.0

Implementations shall provide the following general-computational operations for all supported floating-
point formats available for arithmetic; these operations shall not propagate non-canonical floating-point
results.

For each supported arithmetic format, languages define an associated logBFormat to contain the integral
values of logB(x). The logBFormat shall have enough range to include all integers between ±2 × (emax + p)
inclusive, which includes the scale factors for scaling between the finite numbers of largest and smallest
magnitude.

If logBFormat is an integer format, then the first operand and the floating-point result of scaleB are of the
same format. If logBFormat is a floating-point format, then the following operations are homogeneous.

― sourceFormat scaleB(source, logBFormat)
scaleB(x, N) is x × b N for integral values N. The result is computed as if the exact product were
formed and then rounded to the destination format, subject to the applicable rounding-direction
attribute. When logBFormat is a floating-point format, the behavior of scaleB is language-defined
when the second operand is non-integral. For non-zero values of N, scaleB(±0, N) returns ±0 and
scaleB(±∞, N) returns ±∞. For zero values of N, scaleB(x, N) returns x.
The preferred exponent is Q(x) + N.

― logBFormat logB(source)
logB(x) is the exponent e of x, a signed integral value, determined as though x were represented
with infinite range and minimum exponent. Thus 1 ≤ scaleB(x, −logB(x)) < b when x is positive
and finite. logB(1) is +0.
When logBFormat is a floating-point format, logB(NaN) is a NaN, logB(∞) is +∞, and logB(0) is
−∞ and signals the divideByZero exception. When logBFormat is an integer format, then
logB(NaN), logB(∞), and logB(0) return language-defined values outside the range
±2 × (emax + p − 1) and signal the invalid operation exception.
The preferred exponent is 0.
NOTE — For positive finite x, the value of logB(x) is floor(log2 (x)) in a binary format, and is
floor(log10 (x)) in a decimal format.

20
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

5.4 formatOf general-computational operations 5.4.0

5.4.1 Arithmetic operations 5.4.1.0

Implementations shall provide the following formatOf general-computational operations, for destinations of
all supported arithmetic formats, and, for each destination format, for operands of all supported arithmetic
formats with the same radix as the destination format. These operations shall not propagate non-canonical
results.

― formatOf-addition(source1, source2)
The operation addition(x, y) computes x + y.
The preferred exponent is min(Q(x), Q(y)).

― formatOf-subtraction(source1, source2)
The operation subtraction(x, y) computes x − y.
The preferred exponent is min(Q(x), Q(y)).

― formatOf-multiplication(source1, source2)
The operation multiplication(x, y) computes x × y.
The preferred exponent is Q(x) + Q(y).

― formatOf-division(source1, source2)
The operation division(x, y) computes x / y.
The preferred exponent is Q(x) − Q(y).

― formatOf-squareRoot(source1)
The operation squareRoot(x) computes √ x. It has a positive sign for all operands ≥ 0, except that
squareRoot(−0) shall be −0.
The preferred exponent is floor(Q(x) / 2).

― formatOf-fusedMultiplyAdd(source1, source2, source3)
The operation fusedMultiplyAdd(x, y, z) computes (x × y) + z as if with unbounded range and
precision, rounding only once to the destination format. No underflow, overflow, or inexact
exception (see 7) can arise due to the multiplication, but only due to the addition; and so
fusedMultiplyAdd differs from a multiplication operation followed by an addition operation.
The preferred exponent is min(Q(x) + Q(y), Q(z)).

― formatOf-convertFromInt(int)
It shall be possible to convert from all supported signed and unsigned integer formats to all
supported arithmetic formats. Integral values are converted exactly from integer formats to
floating-point formats whenever the value is representable in both formats. If the converted value
is not exactly representable in the destination format, the result is determined according to the
applicable rounding-direction attribute, and an inexact or floating-point overflow exception arises
as specified in Clause 7, just as with arithmetic operations. The signs of integer zeros are
preserved. Integer zeros without signs are converted to +0.
The preferred exponent is 0.

21
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

Implementations shall provide the following intFormatOf general-computational operations for destinations
of all supported integer formats and for operands of all supported arithmetic formats.

― intFormatOf-convertToIntegerTiesToEven(source)
intFormatOf-convertToIntegerTowardZero(source)
intFormatOf-convertToIntegerTowardPositive(source)
intFormatOf-convertToIntegerTowardNegative(source)
intFormatOf-convertToIntegerTiesToAway(source)
See 5.8 for details.

― intFormatOf-convertToIntegerExactTiesToEven(source)
intFormatOf-convertToIntegerExactTowardZero(source)
intFormatOf-convertToIntegerExactTowardPositive(source)
intFormatOf-convertToIntegerExactTowardNegative(source)
intFormatOf-convertToIntegerExactTiesToAway(source)
See 5.8 for details.

NOTE — Implementations might provide some of the operations in this subclause, and the convertFormat
operations in 5.4.2, as sequences of one or more of a subset of the operations in subclause 5.4 when those
sequences produce the correct numerical value, quantum, and exception results.

5.4.2 Conversion operations for floating-point formats and decimal character sequences 5.4.2.0

Implementations shall provide the following formatOf conversion operations from all supported floating-
point formats to all supported floating-point formats, as well as conversions to and from decimal character
sequences. These operations shall not propagate non-canonical results. Some format conversion operations
produce results in a different radix than the operands.

― formatOf-convertFormat(source)

If the conversion is to a format in a different radix or to a narrower precision in the same radix, the
result shall be rounded as specified in Clause 4. Conversion to a format with the same radix but
wider precision and range is always exact.

For inexact conversions from binary to decimal formats, the preferred exponent is the least
possible. For exact conversions from binary to decimal formats, the preferred exponent is 0.

For conversions between decimal formats, the preferred exponent is Q(source).
― formatOf-convertFromDecimalCharacter(decimalCharacterSequence)

See 5.12 for details. The preferred exponent is Q(decimalCharacterSequence), which is the
exponent value q of the last digit in the significand of the decimalCharacterSequence.

― decimalCharacterSequence convertToDecimalCharacter(source, conversionSpecification)
See 5.12 for details. The conversionSpecification specifies the precision and formatting of the
decimalCharacterSequence result.

5.4.3 Conversion operations for binary formats 5.4.3.0

Implementations shall provide the following formatOf conversion operations to and from all supported
binary floating-point formats; these operations never propagate non-canonical floating-point results.

― formatOf-convertFromHexCharacter(hexCharacterSequence)
See 5.12 for details.

― hexCharacterSequence convertToHexCharacter(source, conversionSpecification)
See 5.12 for details. The conversionSpecification specifies the precision and formatting of the
hexCharacterSequence result.

22
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

5.5 Quiet-computational operations 5.5.0

5.5.1 Sign bit operations 5.5.1.0

Implementations shall provide the following homogeneous quiet-computational sign bit operations for all
supported arithmetic formats; they only affect the sign bit. The operations treat floating-point numbers and
NaNs alike, and signal no exception. These operations may propagate non-canonical encodings.

― sourceFormat copy(source)
sourceFormat negate(source)
sourceFormat abs(source)

copy(x) copies a floating-point operand x to a destination in the same format, with no change to
the sign bit.

negate(x) copies a floating-point operand x to a destination in the same format, reversing the sign
bit. negate(x) is not the same as subtraction(0, x) (see 6.3).

abs(x) copies a floating-point operand x to a destination in the same format, setting the sign bit to
0 (positive).

― sourceFormat copySign(source, source)

copySign(x, y) copies a floating-point operand x to a destination in the same format as x, but with
the sign bit of y.

5.5.2 Decimal re-encoding operations 5.5.2.0

For each supported decimal format (if any), the implementation shall provide the following operations to
convert between the decimal format and the two standard encodings for that format. These operations
enable portable programs that are independent of the implementation’s encoding for decimal types to access
data represented with either standard encoding. These operations may propagate non-canonical encodings.

― decimalEncoding encodeDecimal(decimal)
Encodes the value of the operand using decimal encoding.

― decimal decodeDecimal(decimalEncoding)
Decodes the decimal-encoded operand.

― binaryEncoding encodeBinary(decimal)
Encodes the value of the operand using the binary encoding.

― decimal decodeBinary(binaryEncoding)
Decodes the binary-encoded operand.

where decimalEncoding is a language-defined type for storing decimal-encoded decimal floating-point data,
binaryEncoding is a language-defined type for storing binary-encoded decimal floating-point data, and
decimal is the type of the given decimal floating-point format.

23
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

5.6 Signaling-computational operations 5.6.0

5.6.1 Comparisons 5.6.1.0

Implementations shall provide the following comparison operations, for all supported floating-point
operands of the same radix in arithmetic formats:

― boolean compareQuietEqual(source1, source2)
boolean compareQuietNotEqual(source1, source2)
boolean compareSignalingEqual(source1, source2)
boolean compareSignalingGreater(source1, source2)
boolean compareSignalingGreaterEqual(source1, source2)
boolean compareSignalingLess(source1, source2)
boolean compareSignalingLessEqual(source1, source2)
boolean compareSignalingNotEqual(source1, source2)
boolean compareSignalingNotGreater(source1, source2)
boolean compareSignalingLessUnordered(source1, source2)
boolean compareSignalingNotLess(source1, source2)
boolean compareSignalingGreaterUnordered(source1, source2)
boolean compareQuietGreater(source1, source2)
boolean compareQuietGreaterEqual(source1, source2)
boolean compareQuietLess(source1, source2)
boolean compareQuietLessEqual(source1, source2)
boolean compareQuietUnordered(source1, source2)
boolean compareQuietNotGreater(source1, source2)
boolean compareQuietLessUnordered(source1, source2)
boolean compareQuietNotLess(source1, source2)
boolean compareQuietGreaterUnordered(source1, source2)
boolean compareQuietOrdered(source1, source2).

See 5.11 for details.

5.7 Non-computational operations 5.7.0

5.7.1 Conformance predicates 5.7.1.0

Implementations shall provide the following non-computational operations, true if and only if the indicated
conditions are true:

― boolean is754version1985(void)

is754version1985() is true if and only if this programming environment conforms to the earlier
version of the standard.

― boolean is754version2008(void)
is754version2008() is true if and only if this programming environment conforms to this standard.

Implementations should make these predicates available at translation time (if applicable) in cases where
their values can be determined at that point.

24
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

5.7.2 General operations 5.7.2.0

Implementations shall provide the following non-computational operations for all supported arithmetic
formats and should provide them for all supported interchange formats. They are never exceptional, even
for signaling NaNs.

― enum class(source)
class(x) tells which of the following ten classes x falls into:

signalingNaN
quietNaN
negativeInfinity
negativeNormal
negativeSubnormal
negativeZero
positiveZero
positiveSubnormal
positiveNormal
positiveInfinity.

― boolean isSignMinus(source)
isSignMinus(x) is true if and only if x has negative sign. isSignMinus applies to zeros and NaNs
as well.

― boolean isNormal(source)
isNormal(x) is true if and only if x is normal (not zero, subnormal, infinite, or NaN).

― boolean isFinite(source)
isFinite(x) is true if and only if x is zero, subnormal or normal (not infinite or NaN).

― boolean isZero(source)
isZero(x) is true if and only if x is ±0.

― boolean isSubnormal(source)
isSubnormal(x) is true if and only if x is subnormal.

― boolean isInfinite(source)
isInfinite(x) is true if and only if x is infinite.

― boolean isNaN(source)
isNaN(x) is true if and only if x is a NaN.

― boolean isSignaling(source)
isSignaling(x) is true if and only if x is a signaling NaN.

― boolean isCanonical(source)
isCanonical(x) is true if and only if x is a finite number, infinity, or NaN that is canonical.
Implementations should extend isCanonical(x) to formats that are not interchange formats in ways
appropriate to those formats, which might, or might not, have finite numbers, infinities, or NaNs
that are non-canonical.

― enum radix(source)
radix(x) is the radix b of the format of x, that is, two or ten.

― boolean totalOrder(source, source)
totalOrder(x, y) is defined in 5.10.

― boolean totalOrderMag(source, source)
totalOrderMag(x, y) is totalOrder(abs(x), abs(y)).

Implementations should make these predicates available at translation time (if applicable) in cases where
their values can be determined at that point.

25
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

5.7.3 Decimal operation 5.7.3.0

Implementations supporting decimal formats shall provide the following non-computational operation for
all supported decimal arithmetic formats:

― boolean sameQuantum(source, source)

For numerical decimal operands x and y of the same format, sameQuantum(x, y) is true if the
exponents of x and y are the same, that is, Q(x) = Q(y), and false otherwise. sameQuantum(NaN,
NaN) and sameQuantum(∞, ∞) are true; if exactly one operand is infinite or exactly one operand
is NaN, sameQuantum is false. sameQuantum signals no exception.

5.7.4 Operations on subsets of flags 5.7.4.0

Implementations shall provide the following non-computational operations that act upon multiple status
flags collectively:

― void lowerFlags(exceptionGroup)
Lowers (clears) the flags corresponding to the exceptions specified in the exceptionGroup operand,
which can represent any subset of the exceptions.

― void raiseFlags(exceptionGroup)
Raises (sets) the flags corresponding to the exceptions specified in the exceptionGroup operand,
which can represent any subset of the exceptions.

― boolean testFlags(exceptionGroup)
Queries whether any of the flags corresponding to the exceptions specified in the exceptionGroup
operand, which can represent any subset of the exceptions, are raised.

― boolean testSavedFlags(flags, exceptionGroup)
Queries whether any of the flags in the flags operand corresponding to the exceptions specified in
the exceptionGroup operand, which can represent any subset of the exceptions, are raised.

― void restoreFlags(flags, exceptionGroup)
Restores the flags corresponding to the exceptions specified in the exceptionGroup operand, which
can represent any subset of the exceptions, to their state represented in the flags operand.

― flags saveAllFlags(void)
Returns a representation of the state of all status flags.

The return value of the saveAllFlags operation is for use as the first operand to a restoreFlags or
testSavedFlags operation in the same program; this standard does not require support for any other use.

5.8 Details of conversions from floating-point to integer formats 5.8.0

Implementations shall provide conversion operations from all supported arithmetic formats to all supported
signed and unsigned integer formats. Integral values are converted exactly from floating-point formats to
integer formats whenever the value is representable in both formats.

Conversion to integer shall round as specified in Clause 4; the rounding direction is indicated by the
operation name.

When a NaN or infinite operand cannot be represented in the destination format and this cannot otherwise
be indicated, the invalid operation exception shall be signaled. When a numeric operand would convert to
an integer outside the range of the destination format, the invalid operation exception shall be signaled if
this situation cannot otherwise be indicated.

When the value of the conversion operation’s result differs from its operand value, yet is representable in
the destination format, some conversion operations are specified below to signal the inexact exception and
others to not signal the inexact exception.

26
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

A language standard that permits implicit conversions or expressions involving mixed types should require
that these be implemented with the inexact-signaling conversion operations below.

The operations for conversion from floating-point to a specific signed or unsigned integer format without
signaling the inexact exception are:

― intFormatOf-convertToIntegerTiesToEven(source)
convertToIntegerTiesToEven(x) rounds x to the nearest integral value, with halfway cases
rounded to even.

― intFormatOf-convertToIntegerTowardZero(source)
convertToIntegerTowardZero(x) rounds x to an integral value toward zero.

― intFormatOf-convertToIntegerTowardPositive(source)
convertToIntegerTowardPositive(x) rounds x to an integral value toward positive infinity.

― intFormatOf-convertToIntegerTowardNegative(source)
convertToIntegerTowardNegative(x) rounds x to an integral value toward negative infinity.

― intFormatOf-convertToIntegerTiesToAway(source)
convertToIntegerTiesToAway(x) rounds x to the nearest integral value, with halfway cases
rounded away from zero.

The operations for conversion from floating-point to a specific signed or unsigned integer format, signaling
if inexact, are:

― intFormatOf-convertToIntegerExactTiesToEven(source)
convertToIntegerExactTiesToEven(x) rounds x to the nearest integral value, with halfway cases
rounded to even.

― intFormatOf-convertToIntegerExactTowardZero(source)
convertToIntegerExactTowardZero(x) rounds x to an integral value toward zero.

― intFormatOf-convertToIntegerExactTowardPositive(source)
convertToIntegerExactTowardPositive(x) rounds x to an integral value toward positive infinity.

― intFormatOf-convertToIntegerExactTowardNegative(source)
convertToIntegerExactTowardNegative(x) rounds x to an integral value toward negative
infinity.

― intFormatOf-convertToIntegerExactTiesToAway(source)
convertToIntegerExactTiesToAway(x) rounds x to the nearest integral value, with halfway cases
rounded away from zero.

5.9 Details of operations to round a floating-point datum to integral value 5.9.0

Several operations round a floating-point number to an integral valued floating-point number in the same
format.

The rounding is analogous to that specified in Clause 4, but the rounding chooses only from among those
floating-point numbers of integral values in the format. These operations convert zero operands to zero
results of the same sign, and infinite operands to infinite results of the same sign.

For the following operations, the rounding direction is specified by the operation name and does not depend
on a rounding-direction attribute. These operations shall not signal any exception except for signaling NaN
input.

― sourceFormat roundToIntegralTiesToEven(source)
roundToIntegralTiesToEven(x) rounds x to the nearest integral value, with halfway cases
rounding to even.

― sourceFormat roundToIntegralTowardZero(source)
roundToIntegralTowardZero(x) rounds x to an integral value toward zero.

27
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

― sourceFormat roundToIntegralTowardPositive(source)
roundToIntegralTowardPositive(x) rounds x to an integral value toward positive infinity.

― sourceFormat roundToIntegralTowardNegative(source)
roundToIntegralTowardNegative(x) rounds x to an integral value toward negative infinity.

― sourceFormat roundToIntegralTiesToAway(source)
roundToIntegralTiesToAway(x) rounds x to the nearest integral value, with halfway cases
rounding away from zero.

For the following operation, the rounding direction is the applicable rounding-direction attribute. This
operation signals the invalid operation exception for a signaling NaN operand, and for a numerical operand,
signals the inexact exception if the result does not have the same numerical value as x.

― sourceFormat roundToIntegralExact(source)
roundToIntegralExact(x) rounds x to an integral value according to the applicable rounding-
direction attribute.

5.10 Details of totalOrder predicate 5.10.0

For each supported arithmetic format, an implementation shall provide the following predicate that defines
an ordering among all operands in a particular format:

― boolean totalOrder(source, source)

totalOrder(x, y) imposes a total ordering on canonical members of the format of x and y:

a) If x < y, totalOrder(x, y) is true.
b) If x > y, totalOrder(x, y) is false.
c) If x = y:

1) totalOrder(−0, +0) is true.
2) totalOrder(+0, −0) is false.
3) If x and y represent the same floating-point datum:

i) If x and y have negative sign,
totalOrder(x, y) is true if and only if the exponent of x ≥ the exponent of y

ii) otherwise
totalOrder(x, y) is true if and only if the exponent of x ≤ the exponent of y.

d) If x and y are unordered numerically because x or y is NaN:
1) totalOrder(−NaN, y) is true where −NaN represents a NaN with negative sign bit and y is a

floating-point number.
2) totalOrder(x, +NaN) is true where +NaN represents a NaN with positive sign bit and x is a

floating-point number.
3) If x and y are both NaNs, then totalOrder reflects a total ordering based on:

i) negative sign orders below positive sign
ii) signaling orders below quiet for +NaN, reverse for −NaN
iii) lesser payload, when regarded as an integer, orders below greater payload for +NaN,

reverse for −NaN.

Neither signaling NaNs nor quiet NaNs signal an exception. For canonical x and y, totalOrder(x, y) and
totalOrder(y, x) are both true if x and y are bitwise identical.

NOTE — totalOrder does not impose a total ordering on all encodings in a format. In particular, it does not
distinguish among different encodings of the same floating-point representation, as when one or both
encodings are non-canonical.

28
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

5.11 Details of comparison predicates 5.11.0

For every supported arithmetic format, it shall be possible to compare one floating-point datum to another
in that format (see 5.6.1). Additionally, floating-point data represented in different formats shall be
comparable as long as the operands’ formats have the same radix.

Four mutually exclusive relations are possible: less than, equal, greater than, and unordered. The last case
arises when at least one operand is NaN. Every NaN shall compare unordered with everything, including
itself. Comparisons shall ignore the sign of zero (so +0 = −0). Infinite operands of the same sign shall
compare equal.

Languages define how the result of a comparison shall be delivered, in one of two ways: either as a relation
identifying one of the four relations listed above, or as a true-false response to a predicate that names the
specific comparison desired.

Table 5.1, Table 5.2, and Table 5.3 exhibit twenty-two functionally distinct useful predicates and negations
with various ad-hoc and traditional names and symbols. Each predicate is true if any of its indicated
relations is true. The relation “?” indicates an unordered relation. Table 5.2 lists five unordered-signaling
predicates and their negations that cause an invalid operation exception when the relation is unordered. That
invalid operation exception defends against unexpected quiet NaNs arising in programs written using the
standard predicates {<, <=, >=, >} and their negations, without considering the possibility of a quiet NaN
operand. Programs that explicitly take account of the possibility of quiet NaN operands may use the
unordered-quiet predicates in Table 5.3 which do not signal such an invalid operation exception.

Comparisons never signal an exception other than the invalid operation exception.

Note that predicates come in pairs, each a logical negation of the other; applying a prefix such as NOT to
negate a predicate in Table 5.1, Table 5.2, and Table 5.3 reverses the true/false sense of its associated
entries, but does not change whether unordered relations cause an invalid operation exception.

The unordered-quiet predicates in Table 5.1 do not signal an exception on quiet NaN operands:

Table 5.1 — Required unordered-quiet predicate and negation 5.11.0

Unordered-quiet predicate Unordered-quiet negation

True relations Names True relations Names

EQ compareQuietEqual
=

LT GT UN compareQuietNotEqual
?<>, NOT(=), ≠

The unordered-signaling predicates in Table 5.2, intended for use by programs not written to take into
account the possibility of NaN operands, signal an invalid operation exception on quiet NaN operands:

Table 5.2 — Required unordered-signaling predicates and negations 0

Unordered-signaling predicate Unordered-signaling negation

True relations Names True relations Names

EQ compareSignalingEqual LT GT UN compareSignalingNotEqual

GT compareSignalingGreater
>

EQ LT UN compareSignalingNotGreater
NOT(>)

GT EQ compareSignalingGreaterEqual
> =, ≥

LT UN compareSignalingLessUnordered
NOT(>=)

LT compareSignalingLess
<

EQ GT UN compareSignalingNotLess
NOT(<)

LT EQ compareSignalingLessEqual
< =, ≤

GT UN compareSignalingGreaterUnordered
NOT(<=)

29
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

The unordered-quiet predicates in Table 5.3, intended for use by programs written to take into account the
possibility of NaN operands, do not signal an exception on quiet NaN operands:

Table 5.3 — Required unordered-quiet predicates and negations 0

Unordered-quiet predicate Unordered-quiet negation

True relations Names True relations Names

GT compareQuietGreater
isGreater

EQ LT UN compareQuietNotGreater
?<=, NOT(isGreater)

GT EQ compareQuietGreaterEqual
isGreaterEqual

LT UN compareQuietLessUnordered
?<, NOT(isGreaterEqual)

LT compareQuietLess
isLess

EQ GT UN compareQuietNotLess
?>=, NOT(isLess)

LT EQ compareQuietLessEqual
isLessEqual

GT UN compareQuietGreaterUnordered
?>, NOT(isLessEqual)

UN compareQuietUnordered
?, isUnordered

LT EQ GT compareQuietOrdered
<=>, NOT(isUnordered)

There are two ways to write the logical negation of a predicate, one using NOT explicitly and the other
reversing the relational operator. Thus in programs written without considering the possibility of a NaN
operand, the logical negation of the unordered-signaling predicate (X < Y) is just the unordered-signaling
predicate NOT(X < Y); the unordered-quiet reversed predicate (X ?>= Y) is different in that it does not
signal an invalid operation exception when X and Y are unordered (unless X or Y is a signaling NaN). In
contrast, the logical negation of (X = Y) might be written as either NOT(X = Y) or (X ?<> Y); in this case
both expressions are functionally equivalent to (X ≠ Y).

5.12 Details of conversion between floating-point data and external character
sequences 5.12.0

This clause specifies conversions between supported formats and external character sequences. Note that
conversions between supported formats of different radices are correctly rounded and set exceptions
correctly as described in 5.4.2, subject to limits stated in 5.12.2 below.

Implementations shall provide conversions between each supported binary format and external decimal
character sequences such that, under roundTiesToEven, conversion from the supported format to external
decimal character sequence and back recovers the original floating-point representation, except that a
signaling NaN might be converted to a quiet NaN. See 5.12.1 and 5.12.2 for details.

Implementations shall provide exact conversions from each supported decimal format to external decimal
character sequences, and shall provide conversions back that recover the original floating-point
representation, except that a signaling NaN might be converted to a quiet NaN. See 5.12.1 and 5.12.2 for
details.

Implementations shall provide exact conversions from each supported binary format to external character
sequences representing numbers with hexadecimal digits for the significand, and shall provide conversions
back that recover the original floating-point representation, except that a signaling NaN might be converted
to a quiet NaN. See 5.12.1 and 5.12.3 for details.

This clause primarily discusses conversions during program execution; there is one special consideration
applicable to program translation separate from program execution: translation-time conversion of constants
in program text from external character sequences to supported formats, in the absence of other
specification in the program text, shall use this standard’s default rounding direction and language-defined
exception handling. An implementation might also provide means to permit constants to be translated at
execution time with the attributes in effect at execution time and exceptions generated at execution time.

Issues of character codes (ASCII, Unicode, etc.) are not defined by this standard.

30
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

5.12.1 External character sequences representing zeros, infinities, and NaNs 5.12.1.0

The conversions (described in 5.4.2) from supported formats to external character sequences and back that
recover the original floating-point representation, shall recover zeros, infinities, and quiet NaNs, as well as
non-zero finite numbers. In particular, signs of zeros and infinities are preserved.

Conversion of an infinity in a supported format to an external character sequence shall produce a language-
defined one of “inf” or “infinity” or a sequence that is equivalent except for case (e.g., “Infinity” or “INF”),
with a preceding minus sign if the input is negative. Whether the conversion produces a preceding plus sign
if the input is positive is language-defined.

Conversion of external character sequences “inf” and “infinity” (regardless of case) with an optional
preceding sign, to a supported floating-point format shall produce an infinity (with the same sign as the
input).

Conversion of a quiet NaN in a supported format to an external character sequence shall produce a
language-defined one of “nan” or a sequence that is equivalent except for case (e.g., “NaN”), with an
optional preceding sign. (This standard does not interpret the sign of a NaN.)

Conversion of a signaling NaN in a supported format to an external character sequence should produce a
language-defined one of “snan” or “nan” or a sequence that is equivalent except for case, with an optional
preceding sign. If the conversion of a signaling NaN produces “nan” or a sequence that is equivalent except
for case, with an optional preceding sign, then the invalid operation exception should be signaled.

Conversion of external character sequences “nan” (regardless of case) with an optional preceding sign, to a
supported floating-point format shall produce a quiet NaN.

Conversion of an external character sequence “snan” (regardless of case) with an optional preceding sign, to
a supported format should either produce a signaling NaN or else produce a quiet NaN and signal the
invalid operation exception.

Language standards should provide an optional conversion of NaNs in a supported format to external
character sequences which appends to the basic NaN character sequences a suffix that can represent the
NaN payload (see 6.2). The form and interpretation of the payload suffix is language-defined. The language
standard shall require that any such optional output sequences be accepted as input in conversion of external
character sequences to supported formats.

5.12.2 External decimal character sequences representing finite numbers 5.12.2.0

An implementation shall provide operations that convert from all supported floating-point formats to
external decimal character sequences (see 5.4.2). For finite numbers, these operations can be thought of as
parameterized by the source format, the number of significant digits in the result (if specified), and whether
the quantum is preserved (for decimal formats). Note that specifying the number of significant digits and
specifying quantum preservation are mutually incompatible. The means of specifying the number of
significant digits and of specifying quantum preservation are language-defined and are typically embodied
in the conversionSpecification of 5.4.2.

An implementation shall also provide operations that convert external decimal character sequences to all
supported formats. These operations can be thought of as parameterized by the result format.

Within the limits stated in this clause, conversions in both directions shall preserve the value of a number
unless rounding is necessary and shall preserve its sign. If rounding is necessary, they shall use correct
rounding and shall correctly signal the inexact and other exceptions.

All conversions from external character sequences to supported decimal formats shall preserve the quantum
(see 5.4.2) unless rounding is necessary. At least one conversion from each supported decimal format shall
preserve the quantum as well as the value and sign.

If a conversion to an external character sequence requires an exponent but the exponent is not of sufficient
width to avoid overflow or underflow (see 7.4 and 7.5), the overflow or underflow should be indicated to
the user by appropriate language-defined character sequences.

31
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

For the purposes of discussing the limits on correctly rounded conversion, define the following quantities:

― for binary16, Pmin (binary16) = 5
― for binary32, Pmin (binary32) = 9
― for binary64, Pmin (binary64) = 17
― for binary128, Pmin (binary128) = 36
― for all other binary formats bf, Pmin (bf) = 1 + ceiling(p × log10 (2)), where p is the number of

significant bits in bf
― M = max(Pmin (bf)) for all supported binary formats bf
― for decimal32, Pmin (decimal32) = 7
― for decimal64, Pmin (decimal64) = 16
― for decimal 128, Pmin (decimal 128) = 34
― for all other decimal formats df, Pmin (df) is the number of significant digits in df.

Conversions to and from supported decimal formats shall be correctly rounded regardless of how many
digits are requested or given.

There might be an implementation-defined limit on the number of significant digits that can be converted
with correct rounding to and from supported binary formats. That limit, H, shall be such that H ≥ M + 3 and
it should be that H is unbounded.

For all supported binary formats the conversion operations shall support correctly rounded conversions to
or from external character sequences for all significant digit counts from 1 through H (that is, for all
expressible counts if H is unbounded).

Conversions from supported binary formats to external character sequences for which more than H
significant digits are specified shall pad with trailing zeros.

Conversion from a character sequence of more than H significant digits or larger in exponent range than the
destination binary format first shall be correctly rounded to H digits according to the applicable rounding
direction and shall signal exceptions as though narrowing from a wider format and then the resulting
character sequence of H digits shall be converted with correct rounding according to the applicable
rounding direction.

NOTE 1 — As a consequence of the foregoing, the following are true:

― Conversions to or from decimal formats are correctly rounded.
― For binary formats, all conversions of H significant digits or fewer round correctly according to the

applicable rounding direction; conversions of greater than H significant digits might incur
additional rounding of the order of 10 (M − H) < 10 −3 units in the last place.

― Intervals are respected, in the sense that directed-rounding constraints are honored even when
more than H significant digits are given: the directed rounding error has the correct sign in all
cases, and never exceeds 1 + 1/1000 units in the last place in magnitude.

― Conversions are monotonic; increasing the value of a supported floating-point number does not
decrease its value after conversion to an external character sequence, and increasing the value of
an external character sequence does not decrease its value after conversion to a supported floating-
point number.

― Conversions from a supported binary format bf to an external character sequence and back again
results in a copy of the original number so long as there are at least Pmin (bf) significant digits
specified and the rounding-direction attributes in effect during the two conversions are round to
nearest rounding-direction attributes.

― Conversions from a supported decimal format df to an external character sequence and back again
results in a canonical copy of the original number so long as the conversion to the external
character sequence is one that preserves the quantum.

― Conversions from a supported decimal format df to an external character sequence and back again
recovers the value (but not necessarily the quantum) of the original number so long as there are at
least Pmin (df) significant digits specified.

32
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

― All implementations exchange equivalent decimal sequences: two decimal character sequences are
equivalent if they represent the same value (and quantum, for decimal formats); if two imple-
mentations support a given format they convert any floating-point representation in that format to
equivalent decimal character sequences when the same number of digits is specified and (for
binary formats) the specified number of digits is no greater than H (for both implementations), or
(for decimal formats) when the quantum-preserving conversion is specified.

― Similarly, any two implementations convert equivalent decimal sequences to the same floating-
point number (with the same quantum, for decimal formats) when the number of significant digits
and the result format are supported on both implementations.

NOTE 2 — H should be as large as practical, noting that “practical” might well include “unbounded” on
many systems because any H at least as large as the number of digits required for the longest exact decimal
representation is effectively as good as unbounded. The length of the longest exact decimal representation is
less than twelve thousand digits for binary128.

5.12.3 External hexadecimal-significand character sequences representing finite numbers 5.12.3.0

Language standards should provide conversions between all supported binary formats and external
hexadecimal-significand character sequences. External hexadecimal-significand character sequences for
finite numbers shall be described by the following grammar, which defines a hexSequence:

sign [+ −]
digit [0123456789]
hexDigit [0123456789abcdefABCDEF]
hexExpIndicator [Pp]
hexIndicator "0" [Xx]
hexSignificand ({hexDigit} * "." {hexDigit}+ | {hexDigit}+ "." | {hexDigit}+)
decExponent {hexExpIndicator} {sign}? {digit}+
hexSequence {sign}? {hexIndicator} {hexSignificand} {decExponent}

where each line is a name followed by a rule in which ‘[...]’ selects one of the terminal characters listed
between the brackets, ‘{...}’ refers to an earlier named rule, ‘(... | ... | ...)’ indicates a choice of one of three
alternatives, straight double quotes enclose a terminal character, ‘?’ indicates that there shall be either no
instance or one instance of the preceding item, ‘*’ indicates that there shall be zero or more instances of the
preceding item, and ‘+’ indicates that there shall be one or more instances of the preceding item.
The hexSignificand is interpreted as a hexadecimal constant in which each hexDigit represents a value in the
range 0 through 15 with the letters ‘a’ through ‘f ’ representing 10 through 15, regardless of case. Within the
hexSignificand, the first (leftmost) character is the most significant. If present, the period defines the start of
a hexadecimal fractional part; if the period is to the right of all hexadecimal digits the hexSignificand is an
integer. The decExponent is interpreted as an optionally-signed integer expressed in decimal following the
hexExpIndicator, again with the most significant digit first.

The value of a hexSequence is the value of the hexSignificand multiplied by two raised to the power of the
value of the decExponent, negated if there is a leading ‘−’ sign. The hexIndicator and the hexExpIndicator
have no effect on the value.

When converting to hexadecimal-significand character sequences in the absence of an explicit precision
specification, enough hexadecimal characters shall be used to represent the binary floating-point number
exactly. Conversions to hexadecimal-significand character sequences with an explicit precision
specification, and conversions from hexadecimal-significand character sequences to supported binary
formats, are correctly rounded according to the applicable binary rounding-direction attribute, and signal all
exceptions appropriately.

NOTE — The external hexadecimal-significand character sequences described here follow those specified
for finite numbers in ISO/IEC 9899:1999(E) Programming languages — C (C99), in:

6.4.4.2 floating constants
7.19.6.1 fprintf (conversion specifiers ‘a’ and ‘A’)
7.19.6.2 fscanf (conversion specifier ‘a’)
7.20.1.3 strtod.

33
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

6. Infinity, NaNs, and sign bit 6.0

6.1 Infinity arithmetic 6.1.0

The behavior of infinity in floating-point arithmetic is derived from the limiting cases of real arithmetic with
operands of arbitrarily large magnitude, when such a limit exists. Infinities shall be interpreted in the affine
sense, that is: −∞ < {every finite number} < +∞.

Operations on infinite operands are usually exact and therefore signal no exceptions, including, among
others,

― addition(∞, x), addition(x, ∞), subtraction(∞, x), or subtraction(x, ∞), for finite x
― multiplication(∞, x) or multiplication(x, ∞) for finite or infinite x ≠ 0
― division(∞, x) or division(x, ∞) for finite x
― squareRoot(+∞)
― remainder(x, ∞) for finite normal x
― conversion of an infinity into the same infinity in another format.

The exceptions that do pertain to infinities are signaled only when

― ∞ is an invalid operand (see 7.2)
― ∞ is created from finite operands by overflow (see 7.4) or division by zero (see 7.3)
― remainder(subnormal, ∞) signals underflow.

6.2 Operations with NaNs 6.2.0

Two different kinds of NaN, signaling and quiet, shall be supported in all floating-point operations.
Signaling NaNs afford representations for uninitialized variables and arithmetic-like enhancements (such as
complex-affine infinities or extremely wide range) that are not in the scope of this standard. Quiet NaNs
should, by means left to the implementer’s discretion, afford retrospective diagnostic information inherited
from invalid or unavailable data and results. To facilitate propagation of diagnostic information contained
in NaNs, as much of that information as possible should be preserved in NaN results of operations.

Under default exception handling, any operation signaling an invalid operation exception and for which a
floating-point result is to be delivered shall deliver a quiet NaN.

Signaling NaNs shall be reserved operands that, under default exception handling, signal the invalid
operation exception (see 7.2) for every general-computational and signaling-computational operation except
for the conversions described in 5.12. For non-default treatment, see 8.

Every general-computational and quiet-computational operation involving one or more input NaNs, none of
them signaling, shall signal no exception, except fusedMultiplyAdd might signal the invalid operation
exception (see 7.2). For an operation with quiet NaN inputs, other than maximum and minimum operations,
if a floating-point result is to be delivered the result shall be a quiet NaN which should be one of the input
NaNs. If the trailing significand field of a decimal input NaN is canonical then the bit pattern of that field
shall be preserved if that NaN is chosen as the result NaN. Note that format conversions, including
conversions between supported formats and external representations as character sequences, might be
unable to deliver the same NaN. Quiet NaNs signal exceptions on some operations that do not deliver a
floating-point result; these operations, namely comparison and conversion to a format that has no NaNs, are
discussed in 5.6, 5.8, and 7.2.

6.2.1 NaN encodings in binary formats 6.2.1.0

This subclause further specifies the encodings of NaNs as bit strings when they are the results of operations.
When encoded, all NaNs have a sign bit and a pattern of bits necessary to identify the encoding as a NaN
and which determines its kind (sNaN vs. qNaN). The remaining bits, which are in the trailing significand
field, encode the payload, which might be diagnostic information (see above).

34
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

All binary NaN bit strings have all the bits of the biased exponent field E set to 1 (see 3.4). A quiet NaN bit
string should be encoded with the first bit (d1) of the trailing significand field T being 1. A signaling NaN
bit string should be encoded with the first bit of the trailing significand field being 0. If the first bit of the
trailing significand field is 0, some other bit of the trailing significand field must be non-zero to distinguish
the NaN from infinity. In the preferred encoding just described, a signaling NaN shall be quieted by setting
d1 to 1, leaving the remaining bits of T unchanged.

For binary formats, the payload is encoded in the p −2 least significant bits of the trailing significand field.

6.2.2 NaN encodings in decimal formats 6.2.2.0

A decimal signaling NaN shall be quieted by clearing G5 and leaving the values of the digits d1 through dp − 1
of the trailing significand field unchanged (see 3.5).
Any computational operation that produces, propagates, or quiets a decimal format NaN shall set the bits G6

through Gw + 4 of G to 0, and shall generate only a canonical trailing significand field.

For decimal formats, the payload is the trailing significand field, as defined in 3.5.

6.2.3 NaN propagation 6.2.3.0

An operation that propagates a NaN operand to its result and has a single NaN as an input should produce a
NaN with the payload of the input NaN if representable in the destination format.

If two or more inputs are NaN, then the payload of the resulting NaN should be identical to the payload of
one of the input NaNs if representable in the destination format. This standard does not specify which of the
input NaNs will provide the payload.

Conversion of a quiet NaN from a narrower format to a wider format in the same radix, and then back to the
same narrower format, should not change the quiet NaN payload in any way except to make it canonical.

Conversion of a quiet NaN to a floating-point format of the same or a different radix that does not allow the
payload to be preserved, shall return a quiet NaN that should provide some language-defined diagnostic
information.

There should be means to read and write payloads from and to external character sequences (see 5.12.1).

6.3 The sign bit 6.3.0

When either an input or result is NaN, this standard does not interpret the sign of a NaN. Note, however,
that operations on bit strings — copy, negate, abs, copySign — specify the sign bit of a NaN result,
sometimes based upon the sign bit of a NaN operand. The logical predicate totalOrder is also affected by
the sign bit of a NaN operand. For all other operations, this standard does not specify the sign bit of a NaN
result, even when there is only one input NaN, or when the NaN is produced from an invalid operation.

When neither the inputs nor result are NaN, the sign of a product or quotient is the exclusive OR of the
operands’ signs; the sign of a sum, or of a difference x − y regarded as a sum x + (−y), differs from at most
one of the addends’ signs; and the sign of the result of conversions, the quantize operation, the roundTo-
Integral operations, and the roundToIntegralExact (see 5.3.1) is the sign of the first or only operand. These
rules shall apply even when operands or results are zero or infinite.

When the sum of two operands with opposite signs (or the difference of two operands with like signs) is
exactly zero, the sign of that sum (or difference) shall be +0 in all rounding-direction attributes except
roundTowardNegative; under that attribute, the sign of an exact zero sum (or difference) shall be −0.
However, x + x = x − (−x) retains the same sign as x even when x is zero.

When (a × b) + c is exactly zero, the sign of fusedMultiplyAdd(a, b, c) shall be determined by the rules
above for a sum of operands. When the exact result of (a × b) + c is non-zero yet the result of
fusedMultiplyAdd is zero because of rounding, the zero result takes the sign of the exact result.

Except that squareRoot(−0) shall be −0, every numeric squareRoot result shall have a positive sign.

35
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

7. Default exception handling 7.0

7.1 Overview: exceptions and flags 7.1.0

This clause specifies five kinds of exceptions that shall be signaled when they arise; the signal invokes
default or alternate handling for the signaled exception. For each kind of exception the implementation shall
provide a corresponding status flag.

This clause also specifies default non-stop exception handling for exception signals, which is to deliver a
default result, continue execution, and raise the corresponding status flag (except in the case of exact
underflow, see 7.5). Clause 8 specifies alternate exception handling attributes for those signals; a language
standard might specify that some of those attributes be implemented and then define means for users to
enable them. Default or alternate exception handling for one exception might also signal other exceptions
(see overflow and underflow, 7.4 and 7.5). Therefore, a status flag might be raised by default, by alternate
exception handling, or by explicit user action (see 5.7.4).

With default exception handling, a raised status flag usually indicates that the corresponding exception was
signaled and handled by default. Exceptions are handled without raising status flags only in the case of
exact underflow and status flags are raised without an exception being signaled only at the user’s request.
Status flags shall be lowered only at the user’s request. The user shall be able to test and to alter the status
flags individually or collectively, and shall further be able to save and restore all at one time (see 5.7.4).

A program that does not inherit status flags from another source, begins execution with all status flags
lowered. Language standards should specify defaults in the absence of any explicit user specification,
governing:

― Whether any particular flag exists (in the sense of being testable by non-programmatic means such
as debuggers) outside of scopes in which a program explicitly sets or tests that flag.

― When flags have scope greater than within an invoked function, whether and when an
asynchronous event, such as raising or lowering it in another thread or signal handler, affects the
flag tested within that invoked function.

― When flags have scope greater than within an invoked function, whether a flag’s state can be
determined by non-programmatic means (such as a debugger) within that invoked function.

― Whether flags raised in invoked functions raise flags in invoking functions.
― Whether flags raised in invoking functions raise flags in invoked functions.
― Whether to allow, and if so the means, to specify that flags shall be persistent in the absence of any

explicit program statement otherwise:
― The flags standing at the beginning of execution of a particular function are inherited from an

outer environment, typically an invoking function.
― On return from or termination of an invoked function, the flags standing in an invoking

function are the flags that were standing in the function at the time of return or termination.

An invocation of any operation required by this standard signals at most one exception directly; additional
exceptions might be signaled by default or by alternate exception handling for the first exception. Default
exception handling for overflow (see 7.4) signals the inexact exception. Default exception handling for
underflow (see 7.5) signals the inexact exception if the default result is inexact.

An invocation of the restoreFlags or raiseFlags operation (see 5.7.4) might raise any combination of status
flags directly. An invocation of any other operation required by this standard, when all exceptions are
handled by default, might raise at most two status flags, overflow with inexact (see 7.4) or underflow with
inexact (see 7.5).

For the computational operations defined in this standard, exceptions are defined below to be signaled if
and only if certain conditions arise. That is not meant to imply whether those exceptions are signaled by
operations not specified by this standard such as complex arithmetic or certain transcendental functions.
Those and other operations, not specified by this standard, should signal those exceptions according to the
definitions below for standard operations, but that might not always be economical. Standard exceptions for
nonstandard functions are language-defined.

36
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

7.2 Invalid operation 7.2.0

The invalid operation exception is signaled if and only if there is no usefully definable result. In these cases
the operands are invalid for the operation to be performed.

For operations producing results in floating-point format, the default result of an operation that signals the
invalid operation exception shall be a quiet NaN that should provide some diagnostic information (see 6.2).
These operations are:

a) any general-computational or signaling-computational operation on a signaling NaN (see 6.2),
except for some conversions (see 5.12)

b) multiplication: multiplication(0, ∞) or multiplication(∞, 0)
c) fusedMultiplyAdd: fusedMultiplyAdd(0, ∞, c) or fusedMultiplyAdd(∞, 0, c) unless c is a quiet

NaN; if c is a quiet NaN then it is implementation defined whether the invalid operation exception
is signaled

d) addition or subtraction or fusedMultiplyAdd: magnitude subtraction of infinities, such as:
addition(+∞, −∞)

e) division: division(0, 0) or division(∞, ∞)
f) remainder: remainder(x, y), when y is zero or x is infinite and neither is NaN
g) squareRoot if the operand is less than zero
h) quantize when the result does not fit in the destination format or when one operand is finite and the

other is infinite

For operations producing no result in floating-point format, the operations that signal the invalid operation
exception are:

i) conversion of a floating-point number to an integer format, when the source is NaN, infinity, or a
value that would convert to an integer outside the range of the result format under the applicable
rounding attribute

j) comparison by way of unordered-signaling predicates listed in Table 5.2, when the operands are
unordered

k) logB(NaN), logB(∞), or logB(0) when logBFormat is an integer format (see 5.3.3).

7.3 Division by zero 7.3.0

The divideByZero exception shall be signaled if and only if an exact infinite result is defined for an
operation on finite operands. The default result of divideByZero shall be an ∞ correctly signed according to
the operation:

― For division, when the divisor is zero and the dividend is a finite non-zero number, the sign of the
infinity is the exclusive OR of the operands’ signs (see 6.3).

― For logB(0) when logBFormat is a floating-point format, the sign of the infinity is minus (−∞).

7.4 Overflow 7.4.0

The overflow exception shall be signaled if and only if the destination format’s largest finite number is
exceeded in magnitude by what would have been the rounded floating-point result (see 4) were the exponent
range unbounded. The default result shall be determined by the rounding-direction attribute and the sign of
the intermediate result as follows:

a) roundTiesToEven and roundTiesToAway carry all overflows to ∞ with the sign of the intermediate
result.

b) roundTowardZero carries all overflows to the format’s largest finite number with the sign of the
intermediate result.

c) roundTowardNegative carries positive overflows to the format’s largest finite number, and carries
negative overflows to −∞.

37
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

d) roundTowardPositive carries negative overflows to the format’s most negative finite number, and
carries positive overflows to +∞.

In addition, under default exception handling for overflow, the overflow flag shall be raised and the inexact
exception shall be signaled.

7.5 Underflow 7.5.0

The underflow exception shall be signaled when a tiny non-zero result is detected. For binary formats, this
shall be either:

a) after rounding — when a non-zero result computed as though the exponent range were unbounded
would lie strictly between ± b emin, or

b) before rounding — when a non-zero result computed as though both the exponent range and the
precision were unbounded would lie strictly between ± b emin.

The implementer shall choose how tininess is detected, but shall detect tininess in the same way for all
operations in radix two, including conversion operations under a binary rounding attribute.

For decimal formats, tininess is detected before rounding — when a non-zero result computed as though
both the exponent range and the precision were unbounded would lie strictly between ± b emin.

The default exception handling for underflow shall always deliver a rounded result. The method for
detecting tininess does not affect the rounded result delivered, which might be zero, subnormal, or ± b emin.

In addition, under default exception handling for underflow, if the rounded result is inexact — that is, it
differs from what would have been computed were both exponent range and precision unbounded — the
underflow flag shall be raised and the inexact (see 7.6) exception shall be signaled. If the rounded result is
exact, no flag is raised and no inexact exception is signaled. This is the only case in this standard of an
exception signal receiving default handling that does not raise the corresponding flag. Such an underflow
signal has no observable effect under default handling.

7.6 Inexact 7.6.0

Unless stated otherwise, if the rounded result of an operation is inexact — that is, it differs from what would
have been computed were both exponent range and precision unbounded — then the inexact exception shall
be signaled. The rounded or overflowed result shall be delivered to the destination.

38
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

8. Alternate exception handling attributes 8.0

8.1 Overview 8.1.0

Language standards should define, and require implementations to provide, means for the user to associate
alternate exception handling attributes with blocks (see 4.1). Alternate exception handlers specify lists of
exceptions and actions to be taken for each listed exception if it is signaled. Language standards should
define exception lists containing any subset of the exceptions listed in Clause 7: invalid operation, divide-
ByZero, overflow, underflow, or inexact. Language standards should also define exception lists containing:

― allExceptions: all five exceptions listed in Clause 7, or
― any subset of sub-exceptions ― sub-cases of of the exceptions in Clause 7 (e.g., the sub-cases of

the invalid operation exception in 7.2); the sub-exception names are language-defined.

Language standards should define all the alternate exception handling attributes of this clause. In particular,
language standards should define at least one delayed alternate exception handling attribute for each of the
five exceptions listed in Clause 7. The syntax and scope for such specifications of attribute values are
language-defined.

8.2 Resuming alternate exception handling attributes 8.2.0

Associating a resuming alternate exception handling attribute with a block means: handling the implied
exceptions according to the resuming attribute specified, and resuming execution of the associated block.
Implementations should support these resuming attributes:

― default (raise flag)
Provide the default exception handling (see 7) in the associated block despite alternate exception
handling that might be in effect in wider scope.

― raiseNoFlag
Provide the default exception handling (see 7) without raising the corresponding status flag.

― mayRaiseFlag
Provide the default exception handling (see 7), except languages define whether a flag is raised.
Languages may defer to implementations for performance.

― recordException
Provide the default exception handling (see 7) and record the corresponding exception whenever
Clause 7 specifies raising a flag. Recording an exception means storing a description of the
exception, including language-standard-defined details which might include the current operation
and operands, and the location of the exception. Language standards define operations to convert
exception descriptions to and from character sequences, and to inspect, save, and restore exception
descriptions.

― substitute(x)
Specifiable for any exception: replace the default result of such an exceptional operation with a
variable or expression x. The timing and scope in which x is evaluated is language-defined.

― substituteXor(x)
Specifiable for any exception arising from multiplication or division operations: like substitute(x),
but replace the default result of such an exceptional operation with |x| and, if |x| is not a NaN,
obtaining the sign bit from the XOR of the signs of the operands.

― abruptUnderflow
When underflow is signaled because a tiny non-zero result is detected, replace the default result
with a zero of the same sign or a minimum normal rounded result of the same sign, raise the
underflow flag, and signal the inexact exception. When roundTiesToEven, roundTiesToAway, or
the roundTowardZero attribute is applicable, the rounded result magnitude shall be zero. When the
roundTowardPositive attribute is applicable, the rounded result magnitude shall be the minimum
normal magnitude for positive tiny results, and zero for negative tiny results. When the
roundTowardNegative attribute is applicable, the rounded result magnitude shall be the minimum

39
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

normal magnitude for negative tiny results, and zero for positive tiny results. This attribute has no
effect on the interpretation of subnormal operands.

8.3 Immediate and delayed alternate exception handling attributes 8.3.0

Associating alternate exception handling with a block means: handling the indicated exception(s) according
to the attribute specified. If the indicated exception is signaled then, depending on the exception and the
exception handling attribute, the execution of the associated block might be abandoned immediately or
might continue with default handling. In the latter case the exception handling is delayed and takes place
when the associated block terminates normally. Delayed exception handling is fully deterministic, while
immediate exception handling licenses but does not require an implementation to trade determinism for
performance, because intermediate results being computed within the associated block might not be
deterministic.
Language standards should define, and require implementations to provide, these attributes:

― Immediate alternate exception handler block associated with a block: if the indicated exception is
signaled, abandon execution of the associated block as soon as possible and execute the handler
block, then continue execution where execution would have continued after normal termination of
the associated block, according to the semantics of the language.

― Delayed alternate exception handler block associated with a block: if the indicated exception is
signaled, handle it by default until the associated block terminates normally, then execute the
handler block, then continue execution where execution would have continued after normal
termination of the associated block, according to the semantics of the language.

― Immediate transfer associated with a block: if the indicated exception is signaled, transfer control
as soon as possible; no return is possible.

― Delayed transfer associated with a block: if the indicated exception is signaled, handle it by default
until the associated block terminates normally, then transfer control; no return is possible.

Immediate alternate exception handling for underflow shall be invoked when underflow is signaled, whether
the default result would be exact or inexact. Delayed alternate exception handling for underflow shall be
invoked only for underflow signals corresponding to inexact default results for which the underflow flag
would be raised.

NOTE 1 — Delayed alternate exception handling for an exception listed in Clause 7 (but not sub-
exceptions) can be implemented by testing status flags. However implemented, the status flag
corresponding to the indicated exception should be saved prior to the beginning of the associated block and
then lowered. At the end of the associated block, the current status flag should be saved, and the previously
saved status flag should be restored. The recently saved status flag should then be tested to determine
whether to execute the handler block or transfer control.

NOTE 2 — Immediate alternate exception handling for an exception can be implemented by traps or, for
exceptions listed in Clause 7 other than underflow, by testing status flags after each operation or at the end
of the associated block. Thus for exceptions listed in Clause 7 other than underflow, immediate exception
handling can be implemented with the same mechanism as delayed exception handling, if no better
implementation mechanism is available. No matter how implemented, if the indicated exception is not
signaled in the associated block, then the corresponding status flag should not be changed. If the indicated
exception is signaled in the associated block, causing execution of the handler block or transfer of control,
then the state of the corresponding status flag might not be deterministic.

NOTE 3 — A transfer is a language-specific idiom for non-resumable control transfer. Language standards
might offer several transfer idioms such as:

― break: Abandon the associated block and continue execution where execution would continue
after normal termination of the associated block, according to the semantics of the language.

― throw exceptionName: Causes an exceptionName not to be handled locally, but rather signaled to
the next handling in scope, perhaps the function that invoked the current subprogram, according to
the semantics of that language. The invoker might handle exceptionName by default or by alternate
handling such as signaling exceptionName to the next higher invoking subprograms.

― goto label: Jump; the label might be local or global according to the semantics of the language.

40
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

9. Recommended operations 9.0

Clause 5 completely specifies the operations required for all supported arithmetic formats. This clause
specifies additional operations, recommended for all supported arithmetic formats. These operations are
written as named functions; in a specific programming environment they might be represented by operators
or by functions whose names might differ from those in this standard.

9.1 Conforming language- and implementation-defined functions 9.1.0

For one or more formats, language standards and implementations might define one or more floating-point
functions, not otherwise defined in this document, that conform to this standard by meeting all the
requirements of this subclause. In particular, language standards should define, to be implemented
according to this subclause, as many of the functions of 9.2 as are appropriate to the language. As noted
below, the specifications for inexact exceptions and preferred quantum in previous clauses do not apply to
the functions specified in this clause.

In this clause the domain of a function is that subset of the affinely extended reals for which the function is
well defined.

A conforming function shall return results correctly rounded for the applicable rounding direction for all
operands in its domain. The preferred quantum is language-defined.

9.1.1 Exceptions 9.1.1.0

Except as noted here, functions signal all appropriate exceptions according to 7. All functions shall return a
quiet NaN as a result if there is a NaN among a function’s operands, except in the cases listed in 9.2.

― invalid operation: For all functions, signaling NaN operands shall signal the invalid operation
exception.

Attempts to evaluate a function outside its domain shall return a quiet NaN and signal the invalid
operation exception.

― divideByZero: A function that has a simple pole for some finite floating-point operand shall signal
the divideByZero exception and return an infinity by default.

― inexact: Functions should signal the inexact exception if the result is inexact. Functions should not
signal the inexact exception if the result is exact.

41
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

9.2 Recommended correctly rounded functions 9.2.0

Language standards should define, to be implemented according to 9.1, as many of the operations in
Table 9.1 as is appropriate to the language. As with other operations of this standard, the names of the
operations in Table 9.1 do not necessarily correspond to the names that any particular programming
language would use.

All functions shall signal the invalid operation exception on signaling NaN operands, and should signal the
inexact exception on inexact results, as described in 9.1.1; other exceptions are shown in the table.

Table 9.1 — Recommended correctly rounded functions 9.2.0

Operation Function Domain Other exceptions

exp
expm1
exp2

exp2m1
exp10

exp10m1

e x
e x − 1

2x

2x − 1
10 x

10 x − 1

[−∞, +∞] overflow; underflow

log
log2

log10

loge(x)
log2(x)
log10(x)

[0, +∞] x = 0: divideByZero;
x < 0: invalid operation

logp1
log2p1

log10p1

loge(1 + x)
log2(1 + x)
log10(1 + x)

[−1, +∞]
x = −1: divideByZero;
x < −1: invalid operation;
underflow

hypot(x, y) √(x2 + y2) [−∞, +∞] × [−∞, +∞] overflow; underflow;
see also 9.2.1

rSqrt 1/sqrt(x) [0, +∞] x < 0: invalid operation;
x is ±0: divideByZero

compound(x, n) (1+x)n [−1, +∞] × Z x < −1: invalid operation;
see also 9.2.1

rootn(x, n) x1/n [−∞, +∞] × Z

n = 0: invalid operation;
x < 0 and n even: invalid
operation;
n = −1: overflow, underflow;
see also 9.2.1

pown(x, n) xn [−∞, +∞] × Z see 9.2.1

pow(x, y) x y [−∞, +∞] × [−∞, +∞] see 9.2.1

powr(x, y) x y [0, +∞] × [−∞, +∞] see 9.2.1

sin sin(x) (−∞, +∞) | x| = ∞: invalid operation;
underflow

cos cos(x) (−∞, +∞) | x| = ∞: invalid operation

tan tan(x) (−∞, +∞) | x| = ∞: invalid operation;
underflow

42
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

Table 9.1 — Recommended correctly rounded functions (continued)

Operation Function Domain Other exceptions

sinPi sin(π × x) (−∞, +∞) | x| = ∞: invalid operation;
underflow; see also 9.2.1

cosPi cos(π × x) (−∞, +∞) | x| = ∞: invalid operation;
see also 9.2.1

atanPi atan(x)/π [−∞, +∞] underflow

atan2Pi(y, x) see 9.2.1 [−∞, +∞] × [−∞, +∞] underflow

asin asin(x) [−1, +1] | x| > 1: invalid operation;
underflow

acos acos(x) [−1, +1] | x| > 1: invalid operation

atan atan(x) [−∞, +∞] underflow

atan2(y, x) see 9.2.1 [−∞, +∞] × [−∞, +∞] underflow; see also 9.2.1

sinh sinh(x) [−∞, +∞] overflow; underflow

cosh cosh(x) [−∞, +∞] overflow

tanh tanh(x) [−∞, +∞] underflow

asinh asinh(x) [−∞, +∞] underflow

acosh acosh(x) [+1, +∞] x < 1: invalid operation

atanh atanh(x) [−1, +1]
underflow;
| x| = 1: divideByZero;
| x| > 1: invalid operation

Interval notation is used for the domain: a value adjacent to a bracket is included in the domain and a value
adjacent to a parenthesis is not. Z is the set of integers.

The notation A × B in the domain denotes the set of ordered pairs of elements (a, b) where a is an element
of A and b is an element of B.

The functions sin, cos, tan, asin, acos, atan, and atan2 measure angles in radians. The functions sinPi, cosPi,
asinPi, acosPi, atanPi, and atan2Pi measure angles in half-revolutions.

For symmetric functions, f (−x) is f (x) for all rounding attributes for their entire domain and range. For
antisymmetric functions, f (−x) is −f (x) for roundTiesToEven, roundTiesToAway, and roundTowardZero
for their entire domain and range. hypot(x, y) is even in both operands. atan2(y, x) and atan2Pi(y, x) are
odd in their first operand.

9.2.1 Special values 9.2.1.0

For the functions expm1, exp2m1, exp10m1, logp1, log2p1, log10p1, sin, tan, sinPi, atanPi, asin, atan, sinh,
tanh, asinh, and atanh, f (+0) is +0 and f (−0) is −0 with no exception.

For the functions exp, exp2, and exp10, f (+∞) is +∞ and f (−∞) is +0 with no exception. For the functions
expm1, exp2m1, and exp10m1, f (+∞) is +∞ and f (−∞) is −1 with no exception.

For the functions log, log2, log10, logp1, log2p1, and log10p1, f (+∞) is +∞ with no exception. For the
functions log, log2, and log10, f (±0) is −∞ and signals the divideByZero exception, and f (1) is +0. For the
functions logp1, log2p1, and log10p1, f (−1) is −∞ and signals the divideByZero exception.

For the hypot function, hypot(±0, ±0) is +0, hypot(±∞, qNaN) is +∞, and hypot(qNaN, ±∞) is +∞.

43
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

rSqrt(+∞) is +0 with no exception. rSqrt(±0) is ±∞ and signals the divideByZero exception.

For the compound, rootn, and pown functions, n is a finite integral value in logBFormat. When logBFormat
is a floating-point format, the behavior of these functions is language-defined when the second operand is
non-integral or infinite.

For the compound function:
compound (x, 0) is 1 for x ≥ −1, +∞, or quiet NaN
compound (−1, n) is +∞ and signals the divideByZero exception for integral n < 0
compound (−1, n) is +0 for integral n > 0.

For the rootn function:
rootn (±0, n) is ±∞ and signals the divideByZero exception for odd integral n < 0
rootn (±0, n) is +∞ and signals the divideByZero exception for even integral n < 0
rootn (±0, n) is +0 for even integral n > 0
rootn (±0, n) is ±0 for odd integral n > 0.

For the pown function (integral exponents only):
pown (x, 0) is 1 for any x (even a zero, quiet NaN, or infinity)
pown (±0, n) is ±∞ and signals the divideByZero exception for odd integral n < 0
pown (±0, n) is +∞ and signals the divideByZero exception for even integral n < 0
pown (±0, n) is +0 for even integral n > 0
pown (±0, n) is ±0 for odd integral n > 0.

For the pow function (integral exponents get special treatment):
pow (x, ±0) is 1 for any x (even a zero, quiet NaN, or infinity)
pow (±0, y) is ±∞ and signals the divideByZero exception for y an odd integer < 0
pow (±0, −∞) is +∞ with no exception
pow (±0, +∞) is +0 with no exception
pow (±0, y) is +∞ and signals the divideByZero exception for finite y < 0 and not an odd integer
pow (±0, y) is ±0 for finite y > 0 an odd integer
pow (±0, y) is +0 for finite y > 0 and not an odd integer
pow (−1, ±∞) is 1 with no exception
pow (+1, y) is 1 for any y (even a quiet NaN)
pow (x, y) signals the invalid operation exception for finite x < 0 and finite non-integer y.

For the powr function (derived by considering only exp(y × log(x))):
powr (x, ±0) is 1 for finite x > 0
powr (±0, y) is +∞ and signals the divideByZero exception for finite y < 0
powr (±0, −∞) is +∞
powr (±0, y) is +0 for y > 0
powr (+1, y) is 1 for finite y
powr (x, y) signals the invalid operation exception for x < 0
powr (±0, ±0) signals the invalid operation exception
powr (+∞, ±0) signals the invalid operation exception
powr (+1, ±∞) signals the invalid operation exception
powr (x, qNaN) is qNaN for x ≥ 0
powr (qNaN, y) is qNaN.

sinPi(+n) is +0 and sinPi(−n) is −0 for positive integers n. This implies, under appropriate rounding modes,
that sinPi(−x) and −sinPi(x) are the same number (or both NaN) for all x. cosPi(n + ½) is +0 for any integer
n when n + ½ is representable. This implies that cosPi(−x) and cosPi(x) are the same (or both NaN) for all
x.

atanPi(±∞) is ±1/2 with no exception.

atan2Pi(y, x) is the angle subtended at the origin by the point (x, y) and the positive x-axis. The range of
atan2Pi is [−1, +1].

For y with positive sign bit, the general cases of atan2Pi(y, x) for finite non-zero numeric x are correctly
rounded from the following exact expressions:

44
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

atan2Pi(y, x) for finite x > 0 is atan(| y/x|)/π, which can signal the inexact or underflow exceptions
atan2Pi(y, x) for finite x < 0 is 1− atan(| y/x|)/π, which can signal the inexact exception.

For y with positive sign bit, the special cases of atan2Pi(y, x) involving 0 and ∞ are exact constants that
signal no exception:

atan2Pi(±0, −0) is ±1
atan2Pi(±0, +0) is ±0
atan2Pi(±0, x) is ±1 for x < 0
atan2Pi(±0, x) is ±0 for x > 0
atan2Pi(y, ±0) is −½ for y < 0
atan2Pi(y, ±0) is +½ for y > 0
atan2Pi(±y, −∞) is ±1 for finite y > 0
atan2Pi(±y, +∞) is ±0 for finite y > 0
atan2Pi(±∞, x) is ±½ for finite x
atan2Pi(±∞, −∞) is ±¾
atan2Pi(±∞, +∞) is ±¼.

atan(±∞) is ±π/2 rounded and signals the inexact exception.

atan2(y, x) is the angle subtended at the origin by the point (x, y) and the positive x-axis; that angle is also
the argument or phase or imaginary part of the logarithm of the complex number x + i y. The unrounded
range of atan2 is [−π, +π].

For y with positive sign bit, the general cases of atan2(y, x) for finite non-zero numeric x are correctly
rounded from the following exact expressions:

atan2(y, x) for finite x > 0 is atan(| y/x|), which can signal the inexact or underflow exceptions
atan2(y, x) for finite x < 0 is π − atan(| y/x|), which can signal the inexact exception.

For y with positive sign bit, the special cases of atan2(y, x) involving 0 and ∞ are constants which can
signal the inexact exception but no other exception:

atan2(±0, −0) is ±π
atan2(±0, +0) is ±0
atan2(±0, x) is ±π for x < 0
atan2(±0, x) is ±0 for x > 0
atan2(y, ±0) is −π/2 for y < 0
atan2(y, ±0) is +π/2 for y > 0
atan2(±y, −∞) is ±π for finite y > 0
atan2(±y, +∞) is ±0 for finite y > 0
atan2(±∞, x) is ±π/2 for finite x
atan2(±∞, −∞) is ±3π/4
atan2(±∞, +∞) is ±π/4.

For some formats under some rounding attributes the rounded magnitude range of atan (atan2) may exceed
the unrounded magnitude of π/2 (π). In those cases, an anomalous manifold jump may occur under the
inverse function for which the careful programmer should account.

acos(1) is +0 and acosh(1) is +0.

sinh(±∞) and asinh(±∞) are ±∞ with no exception. cosh(±∞) and acosh(+∞) are +∞ with no exception.
tanh(±∞) is ±1 with no exception. atanh(±1) is ±∞ and signals the divideByZero exception.

Non-standard formats with very large precision relative to exponent range might signal additional
exceptions not listed in Table 9.1. For instance, cosPi and log might signal underflow or overflow and tan
might signal overflow.

45
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

9.3 Operations on dynamic modes for attributes 9.3.0

9.3.1 Operations on individual dynamic modes 9.3.1.0

Language standards that define dynamic mode specification (see 4.2) for binary or decimal rounding
directions shall define corresponding non-computational operations to get and set the applicable value of
each specified dynamic mode rounding direction. The applicable value of the rounding direction might have
been set by a constant attribute specification or a dynamic-mode assignment, according to the scoping rules
of the language. The effect of these operations, if used outside the static scope of a dynamic specification
for a rounding direction, is language-defined (and may be unspecified).

Language standards that define dynamic mode specification for binary rounding direction shall define:

― binaryRoundingDirection getBinaryRoundingDirection(void)
― void setBinaryRoundingDirection(binaryRoundingDirection).

Language standards that define dynamic mode specification for decimal rounding direction shall define:

― decimalRoundingDirection getDecimalRoundingDirection(void)
― void setDecimalRoundingDirection(decimalRoundingDirection).

Language standards that define dynamic mode specification for other attributes shall define corresponding
operations to get and set those dynamic modes.

9.3.2 Operations on all dynamic modes 9.3.2.0

Implementations supporting dynamic specification for modes shall provide the following non-computational
operations for all dynamic-specifiable modes collectively:

― modeGroup saveModes(void)
Saves the values of all dynamic-specifiable modes as a group.

― void restoreModes(modeGroup)
Restores the values of all dynamic-specifiable modes as a group.

― void defaultModes(void)
Sets all dynamic-specifiable modes to default values.

modeGroup represents the set of dynamically-specifiable modes. The return values of the saveModes
operation are for use as operands of the restoreModes operation in the same program; this standard does not
require support for any other use.

9.4 Reduction operations 9.4.0

Language standards should define the following reduction operations for all supported arithmetic formats.
Unlike the other operations in this standard, these operate on vectors of operands in one format and return a
result in the same format. Implementations may associate in any order or evaluate in any wider format.

The vector length operand shall have integral values in a language-defined format, integralFormat. If
integralFormat is a floating-point format, it shall have a precision at least as large as sourceFormat and
have the same radix. The behavior of these operations is language-defined when the vector length operand
is non-integral or negative.

Numerical results and exceptional behavior, including the invalid operation exception, may differ among
implementations due to the precision of intermediates and the order of evaluation.

Language standards should define the following sum reductions:

― sourceFormat sum(source vector, integralFormat)
sum(p, n) is an implementation-defined approximation to ∑(i = 1, n) pi, where p is a vector of length
n.

46
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

― sourceFormat dot(source vector, source vector, integralFormat)
dot(p, q, n) is an implementation-defined approximation to ∑(i = 1, n) (pi × qi), where p and q are
vectors of length n.

― sourceFormat sumSquare(source vector, integralFormat)
sumSquare(p, n) is an implementation-defined approximation to ∑(i = 1, n) pi2, where p is a vector of
length n.

― sourceFormat sumAbs(source vector, integralFormat)
sumAbs(p, n) is an implementation-defined approximation to ∑(i = 1, n) | pi|, where p is a vector of
length n.

For sum and dot, if any operand element is a NaN a quiet NaN is returned. A product of ∞ × 0 signals the
invalid operation exception. A sum of infinities of different signs signals the invalid operation exception.
Otherwise, a sum of infinities of the same sign returns that infinity and does not signal any exception.
Otherwise, sums are computed in a manner that avoids overflow or underflow in the calculation and the
final result is determined from that intermediate result. If that result overflows, signal overflow. If the result
underflows, signal underflow.

For sumSquare and sumAbs, if any operand element is an infinity, +∞ is returned. Otherwise, if any operand
element is a NaN a quiet NaN is returned. Otherwise, sums are computed in a manner that avoids overflow
or underflow in the calculation and the final result is determined from that. If that result overflows, signal
overflow. If the result underflows, signal underflow.

When the vector length operand is zero, the return value is +0 without exception.

Language standards should define the following scaled product reduction operations:

― (sourceFormat, integralFormat) scaledProd(source vector, integralFormat)
{pr, sf} is scaledProd(p, n) where p is a vector of length n; scaleB(pr, sf) is an implementation-
defined approximation to ∏(i = 1, n) pi .

― (sourceFormat, integralFormat) scaledProdSum(source vector, source vector, integralFormat)
{pr, sf} is scaledProdSum(p, q, n) where p and q are vectors of length n; scaleB(pr, sf) is an
implementation-defined approximation to ∏(i = 1, n) (pi + qi).

― (sourceFormat, integralFormat) scaledProdDiff(source vector, source vector, integralFormat)
{pr, sf} is scaledProdDiff(p, q, n) where p and q are vectors of length n; scaleB(pr, sf) is an
implementation-defined approximation to ∏(i = 1, n) (pi − qi).

The vector operands and the scaled product member of the result shall be of the same format. The vector
length operand and the scale factor member of the result shall have integral values and should be of the
same language-defined format, integralFormat.

For scaledProd, scaledProdSum, and scaledProdDiff, if any operand element is a NaN a quiet NaN is
returned. A product of ∞ × 0 signals the invalid operation exception. A sum of infinities of different signs
(or a difference of infinities of like signs) signals the invalid operation exception. Otherwise, if there are
infinities in the product, an infinity is returned and the invalid operation exception is not signaled.
Otherwise, if there are zeros in the product, a zero is returned and the invalid operation exception is not
signaled.

In the absence of any of the above, the scaled result, pr, shall not be affected by overflow or underflow.
These operations should not signal the divideByZero exception, even if implemented with logB. If the scale
factor is too large in magnitude to be represented exactly in the format of sf, then these operations shall
signal the invalid operation exception and by default return quiet NaN for pr, and also for sf if
integralFormat is a floating-point format.

When the vector length operand is zero, pr is 1 and sf is +0 without exception.

47
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

10. Expression evaluation 10.0

10.1 Expression evaluation rules 10.1.0

Clause 5 of this standard specifies the result of a single arithmetic operation. Every operation has an explicit
or implicit destination. For numerical results, one rounding occurs to fit the exact result into a destination
format. That result is reproducible in that the same operation applied to the same operands under the same
attributes produces the same result on all conforming implementations in all languages.

Programming language standards might define syntax for expressions that combine one or more operations
of this standard, producing a result to fit an explicit or implicit final destination. When a variable with a
declared format is a final destination, as in format conversion to a variable, that declared format of that
variable governs its rounding. The format of an implicit destination, or of an explicit destination without a
declared format, is defined by language standard expression evaluation rules.

A programming language standard specifies one or more rules for expression evaluation. A rule for
expression evaluation encompasses:

― The order of evaluation of operations.
― The formats of implicit intermediate results.
― When assignments to explicit destinations round once, and when twice (see below).
― The formats of parameters to generic and non-generic operations.
― The formats of results of generic operations.

Language standards might permit the user to select different language-standard-defined rules for expression
evaluation, and might allow implementations to define additional expression evaluation rules and specify
the default expression evaluation rule; in these cases language standards should define preferredWidth
attributes as specified below.

Some language standards implicitly convert operands of standard floating-point operations to a common
format. Typically, operands are promoted to the widest format of the operands or a preferredWidth format.
However, if the common format is not a superset of the operand formats, then the conversion of an operand
to the common format might not preserve the values of the operands. Examples include:

― Converting a fixed-point or integer operand to a floating-point format with less precision.
― Converting a floating-point operand from one radix to another.
― Converting a floating-point operand to a format with the same radix but with either less range or

less precision.

Language standards should disallow, or provide warnings for, mixed-format operations that would cause
implicit conversion that might change operand values.

10.2 Assignments, parameters, and function values 10.2.0

The last operation of many expressions is an assignment to an explicit final destination variable. As a part
of expression evaluation rules, language standards shall specify when the next to last operation is performed
by rounding at most once to the format of the explicit final destination, and when by rounding as many as
two times, first to an implicit intermediate format, and then to the explicit final destination format. The
latter case does not correspond to any single operation in Clause 5 but implies a sequence of two such
operations.

In either case, implementations shall never use an assigned-to variable’s wider precursor in place of the
assigned-to variable’s stored value when evaluating subsequent expressions.

When a function has explicitly-declared formal parameter types in scope, the actual parameters shall be
rounded if necessary to those explicitly-declared types. When a function does not have explicitly-declared
formal parameter types in scope, or is a generic operation, the actual parameters shall be rounded according
to language-standard-defined rules.

48
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

When a function explicitly declares the type of its return value, the return value shall be rounded to that
explicitly-declared type. When the return value type of a function is implicitly defined by language standard
rules, the return value shall be rounded to that implicitly-defined type.

10.3 preferredWidth attributes for expression evaluation 10.3.0

Language standards defining generic operations, supporting more than one arithmetic format in a particular
radix, and defining or allowing more than one way to map expressions in that language into the operations
of this standard, should define preferredWidth attributes for each such radix. preferredWidth attributes are
explicitly enabled by the user and specify one aspect of expression evaluation: the implicit destination
format of language-standard-specified generic operations.

In this standard, a computational operation that returns a numeric result first produces an unrounded result
as an exact number of infinite precision. That unrounded result is then rounded to a destination format. For
certain language-standard-specified generic operations, that destination format is implied by the widths of
the operands and by the preferredWidth attribute currently in effect.

The following preferredWidth attributes disable and enable widening of operations in expressions that
might be as simple as z = x + y or that might involve several operations on operands of different formats.

― preferredWidthNone attribute: Each such language standard should define, and require
implementations to provide, means for users to specify a preferredWidthNone attribute for a block.
Destination width is the maximum of the operand widths: generic operations with floating-point
operands and results of the same radix round results to the widest format among the operands.

― preferredWidthFormat attributes: Each such language standard should define, and require
implementations to provide, means for users to specify a preferredWidthFormat attribute for a
block. Table 10.1 lists operators with floating-point results that are suitable for being affected by
preferredWidth attributes. The destination width is typically the maximum of the width of the
preferredWidthFormat and operand widths: affected operations with floating-point operands and
results (of the same radix) round results to the widest format among the operands and the
preferredWidthFormat. Affected operations do not narrow their operands, which might be widened
expressions. preferredWidthFormat affects only destinations in the radix of that format.

preferredWidth attributes do not affect the width of the final rounding to an explicit destination with a
declared format, which is always rounded to that format. preferredWidth attributes do not affect explicit
format conversions within expressions; they are always rounded to the format specified by the conversion.

Table 10.1 — preferredWidth operations with floating-point results 10.3.0

destination addition(source1, source2)
destination subtraction(source1, source2)
destination multiplication(source1, source2)
destination division(source1, source2)
destination squareRoot (source1)
destination fusedMultiplyAdd (source1, source2, source3)
destination minNum(source1, source2)
destination maxNum(source1, source2)
destination minNumMag(source1, source2)
destination maxNumMag(source1, source2)

destination f (source) or f (source1, source2) for f any of the functions in Clause 9.

49
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

10.4 Literal meaning and value-changing optimizations 10.4.0

Language standards should define the literal meaning of the source code of a program that translates to
operations of this standard. The literal meaning is contained in the order of operations (controlled by
precedence rules and parentheses), destination formats (implicit and explicit) for operations, and the scope
of attribute or dynamic mode specifications. A language standard should require that by default, when no
optimizations are enabled and no alternate exception handling is enabled, language implementations
preserve the literal meaning of the source code. That means that language implementations do not perform
value-changing transformations that change the numerical results or the flags raised.

A language implementation preserves the literal meaning of the source code by, for example:

― Preserving the order of operations defined by explicit sequence or parenthesization.
― Preserving the formats of explicit and implicit destinations.
― Applying the properties of real numbers to floating-point expressions only when they preserve

numerical results and flags raised:
― Applying the commutative law only to operations, such as addition and multiplication, for

which neither the numerical values of the results, nor the representations of the results, depend
on the order of the operands.

― Applying the associative or distributive laws only when they preserve numerical results and
flags raised.

― Applying the identity laws (0 + x and 1 × x) only when they preserve numerical results and flags
raised.

― Preserving the order of operations affected by attributes or dynamic modes with respect to
operations that modify attributes or dynamic modes; most computational operations are affected by
attributes or dynamic modes.

― Preserving the order of operations that restore, lower, or raise status flags with respect to
operations that test or save status flags; most computational operations can raise status flags.

The following value-changing transformations, among others, preserve the literal meaning of the source
code:

― Applying the identity property 0 + x when x is not zero and is not a signaling NaN and the result
has the same exponent as x.

― Applying the identity property 1 × x when x is not a signaling NaN and the result has the same
exponent as x.

― Changing the payload or sign bit of a quiet NaN.
― Changing the order in which different flags are raised.
― Changing the number of times a flag is raised when it is raised at least once.

A language standard should also define, and require implementations to provide, attributes that allow and
disallow value-changing optimizations, separately or collectively, for a block. These optimizations might
include, but are not limited to:

― Applying the associative or distributive laws.
― Synthesis of a fusedMultiplyAdd operation from a multiplication and an addition.
― Synthesis of a formatOf operation from an operation and a conversion of the result of the

operation.
― Use of wider intermediate results in expression evaluation.

Programmers license these optimizations when the corresponding changes in numerical values or status
flags are acceptable.

50
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

11. Reproducible floating-point results 11.0

Reproducible floating-point numerical and status flag results are possible for reproducible operations, with
reproducible attributes, operating on reproducible formats, defined for each language as follows:

― A reproducible operation is one of the operations described in Clause 5 or is a supported operation
from 9.2 or 9.3.

― A reproducible attribute is an attribute that is required by a language standard in all implement-
ations (see 4).

― A reproducible status flag is one raised by the invalid operation, division by zero, or overflow
exceptions (see 7.2, 7.3, and 7.4).

― A reproducible format is an arithmetic format that is also an interchange format (see 3).

Programs that can be reliably translated into an explicit or implicit sequence of reproducible operations on
reproducible formats produce reproducible results. That is, the same numerical and reproducible status flag
results are produced.

Reproducible results require cooperation from language standards, language processors, and users. A
language standard should support reproducible programming. Any conforming language standard
supporting reproducible programming shall:

― Support the reproducible-results attribute.
― Support a reproducible format by providing all the reproducible operations for that format.
― Provide means to explicitly or implicitly specify any sequence of reproducible operations on

reproducible formats supported by that language.

and shall explicitly define:

― Which language element corresponds to which supported reproducible format.
― How to specify in the language each reproducible operation on each supported reproducible

format.
― One or more unambiguous expression evaluation rules that shall be available for user selection on

all conforming implementations of that language standard, without deferring any aspect to
implementations. If a language standard permits more than one interpretation of a sequence of
operations from this standard it shall provide a means of specifying an unambiguous evaluation of
that sequence (such as by prescriptive parentheses).

― A reproducible-results attribute, as described in 4.1, with values to indicate when reproducible
results are required or reproducible results are not required. Language standards define the default
value. When the user selects reproducible results required:
― Execution behavior shall preserve the literal meaning (see 10.4) of the source code.
― Conversions to and from external decimal character sequence shall not limit the maximum

supported precision H (see 5.12.2).
― Language processors shall indicate where reproducibility of operations that can affect the

results of floating-point operations can not be guaranteed.
― Only default exception handling (see 7) shall be used.
Note that if a language supports separately compiled routines (e.g., library routines for common
functions), there must be some mechanism to ensure reproducible behavior.

Users obtain the same floating-point numerical and reproducible status flag results, on all platforms
supporting such a language standard, by writing programs that:

― Use the reproducible results required attribute.
― Use only floating-point formats that are reproducible formats.
― Use only reproducible floating-point operations explicitly, or implicitly via expressions.
― Use only attributes required in all implementations for rounding, and preferredWidth.

51
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

― Use only integer and non-floating-point formats supported in all implementations of the language
standard, and only in ways that avoid signaling integer arithmetic exceptions and other implement-
ation-defined exceptions.

and that

― Do not use value-changing optimizations (see 10.4).
― Do not exceed system limits.
― Do not use fusedMultiplyAdd(0, ∞, c) or fusedMultiplyAdd(∞, 0, c) where c is a quiet NaN.
― Do not use signaling NaNs.
― Do not depend on the sign of a zero result or the quantum of a decimal result for minNum(x, y),

maxNum(x, y), minNumMag(x, y), or maxNumMag(x, y) when x and y are equal.
― Do not depend on quiet NaN propagation, payloads, or sign bits.
― Do not depend on the underflow and inexact exceptions and flags.
― Do not depend on the quantum of the results of operations on decimal formats in Table 9.1.
― Do not depend on encodings (e.g., type overlays).

52
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

Annex A (informat ive) Bibliography
(informative)

Bibliography

The following documents might be helpful to the reader.

[B1] ANSI INCITS 4–1986 Information Systems — Coded Character Sets — 7-bit American National
Standard Code for Information Interchange (7-Bit ASCII).

[B2] Boldo, S., and Muller, J.-M., “Some functions computable with a fused-mac”, Proceedings of the
17th IEEE Symposium on Computer Arithmetic, ISBN 0-7695-2366-8, pp. 52–58, IEEE Computer Society,
2005.

[B3] Bruguera, J. D., and Lang, T., “Floating-point Fused Multiply-Add: Reduced Latency for Floating-
Point Addition”, Proceedings of the 17th IEEE Symposium on Computer Arithmetic, ISBN 0-7695-2366-8,
pp. 42–51, IEEE Computer Society, 2005.

[B4] Coonen, J. T., “Contributions to a Proposed Standard for Binary Floating-point Arithmetic”, PhD
thesis, University of California, Berkeley, 1984.

[B5] Cowlishaw, M. F., “Densely-Packed Decimal Encoding”, IEE Proceedings — Computers and Digital
Techniques, Vol. 149 #3, ISSN 1350-2387, pp. 102–104, IEE, London, 2002.

[B6] Cowlishaw, M. F., “Decimal Floating-Point: Algorism for Computers”, Proceedings of the 16th
IEEE Symposium on Computer Arithmetic, ISBN 0-7695-1894-X, pp. 104–111, IEEE Computer Society,
2003.

[B7] Demmel, J. W., and Li., X., “Faster numerical algorithms via exception handling”, IEEE
Transactions on Computers, 43(8): pp. 983–992, 1994.

[B8] de Dinechin, F., Ershov, A., and Gast, N., “Towards the post-ultimate libm”, Proceedings of the 17th
IEEE Symposium on Computer Arithmetic, ISBN 0-7695-2366-8, pp. 288–295, IEEE Computer Society,
2005.

[B9] de Dinechin, F., Lauter, C. Q., and Muller, J.-M., “Fast and correctly rounded logarithms in double-
precision”, Theoretical Informatics and Applications, 41, pp. 85–102, EDP Sciences, 2007.

[B10] Higham, N. J., Accuracy and Stability of Numerical Algorithms, 2nd edition, ISBN 0-89871-521-0,
Society for Industrial and Applied Mathematics (SIAM), 2002.

[B11] IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems (previously designated
IEC 559:1989).

[B12] ISO/IEC 9899:1999(E) Programming languages — C (C99).

[B13] Kahan, W., “Branch Cuts for Complex Elementary Functions, or Much Ado About Nothing’s Sign
Bit”, The State of the Art in Numerical Analysis, (Eds. Iserles and Powell), Clarendon Press, Oxford, 1987.

[B14] Lefèvre, V., “New results on the distance between a segment and Z2. Application to the exact
rounding”, Proceedings of the 17th IEEE Symposium on Computer Arithmetic, ISBN 0-7695-2366-8,
pp. 68–75, IEEE Computer Society, 2005.

[B15] Lefèvre, V., and Muller, J.-M., “Worst cases for correct rounding of the elementary functions in
double precision”, Proceedings of the 15th IEEE Symposium on Computer Arithmetic, ISBN
0-7695-1150-3, pp. 111–118, IEEE Computer Society, 2001.

[B16] Markstein, P., IA-64 and Elementary Functions: Speed and Precision, ISBN 0-13-018348-2,
Prentice Hall, Upper Saddle River, NJ, 2000.

[B17] Montoye, R. K., Hokenek, E., and Runyou, S. L., “Design of the IBM RISC System/6000 floating-
point execution unit”, IBM Journal of Research and Development, 34(1), pp. 59–70, 1990.

53
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

[B18] Muller, J.-M., Elementary Functions: Algorithms and Implementation, 2nd edition, Chapter 10,
ISBN 0-8176-4372-9, Birkhäuser, 2006.

[B19] Overton, M. L., Numerical Computing with IEEE Floating Point Arithmetic, ISBN 0-89871-571-7,
Society for Industrial and Applied Mathematics (SIAM), 2001.

[B20] Schwarz, E. M., Schmookler, M. S., and Trong, S. D., “Hardware Implementations of Denormalized
Numbers”, Proceedings of the 16th IEEE Symposium on Computer Arithmetic, ISBN 0-7695-1894-X,
pp. 70–78, IEEE Computer Society, 2003.

[B21] Stehlé, D., Lefèvre, V., and Zimmermann, P., “Searching worst cases of a one-variable function”,
IEEE Transactions on Computers, 54(3), pp. 340–346, 2005.

[B22] The Unicode Standard, Version 5.0, The Unicode Consortium, Addison-Wesley Professional, 27
October 2006, ISBN 0-321-48091-0.

54
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

Annex B (infor mat ive) Prog ram de buggi ng support

(informative)

Program debugging support

B.1 Overview 0

Implementations of this standard vary in the priorities they assign to characteristics like performance and
debuggability (the ability to debug). This annex describes some programming environment features that
should be provided by implementations that intend to support maximum debuggability. On some
implementations, enabling some of these abilities might be very expensive in performance compared to
fully optimized code.

Debugging includes finding the origins of and reasons for numerical sensitivity or exceptions, finding
programming errors such as accessing uninitialized storage that are only manifested as incorrect numerical
results, and testing candidate fixes for problems that are found.

B.2 Numerical sensitivity 0

Debuggers should be able to alter the attributes governing handling of rounding or exceptions inside
subprograms, even if the source code for those subprograms is not available; dynamic modes might be used
for this purpose. For instance, changing the rounding direction or precision during execution might help
identify subprograms that are unusually sensitive to rounding, whether due to ill-condition of the problem
being solved, instability in the algorithm chosen, or an algorithm designed to work in only one rounding-
direction attribute. The ultimate goal is to determine responsibility for numerical misbehavior, especially in
separately-compiled subprograms. The chosen means to achieve this ultimate goal is to facilitate the
production of small reproducible test cases that elicit unexpected behavior.

B.3 Numerical exceptions 0

Debuggers should be able to detect, and pause the program being debugged, when a prespecified exception
is signaled within a particular subprogram, or within specified subprograms that it calls. To avoid
confusion, the pause should happen soon after the event which precipitated the pause. After such a pause,
the debugger should be able to continue execution as if the exception had been handled by an alternate
handler if specified, or otherwise by the default handler. The pause is associated with an exception and
might not be associated with a well-defined source-code statement boundary; insisting on pauses that are
precise with respect to the source code might well inhibit optimization.

Debuggers should be able to raise and lower status flags.

Debuggers should be able to examine all the status flags left standing at the end of a subprogram’s or whole
program’s execution. These capabilities should be enhanced by implementing each status flag as a reference
to a detailed record of its origin and history. By default, even a subprogram presumed to be debugged
should at least insert a reference to its name in an status flag and in the payload of any new quiet NaN
produced as a floating-point result of an invalid operation. These references indicate the origin of the
exception or NaN.

Debuggers should be able to maintain tables of histories of quiet NaNs, using the NaN payload to index the
tables.

Debuggers should be able to pause at every floating-point operation, without disrupting a program’s logic
for dealing with exceptions. Debuggers should display source code lines corresponding to machine
instructions whenever possible.

For various purposes a signaling NaN could be used as a reference to a record containing a numerical value
extended by an exception history, wider exponent, or wider significand. Consequently debuggers should be
able to cause bitwise operations like negate, abs, and copySign, which are normally silent, to detect
signaling NaNs. Furthermore the signaling attribute of signaling NaNs should be able to be enabled or

55
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

disabled globally or within a particular scope, without disrupting or being affected by a program’s logic for
default or alternate handling of other invalid operation exceptions.

B.4 Programming errors 0

Debuggers should be able to define some or all NaNs as signaling NaNs that signal an exception every time
they are used. In formats with superfluous bit patterns not generated by arithmetic, such as non-canonical
significand fields in decimal formats, debuggers should be able to enable signaling-NaN behavior for data
containing such bit patterns.

Debuggers should be able to set uninitialized storage and variables, such as heap and common space, to
specific bit patterns such as all-zeros or all-ones which are helpful for finding inadvertent usages of such
variables; those usages might prove refractory to static analysis if they involve multiple aliases to the same
physical storage.

More helpful, and requiring correspondingly more software coordination to implement, are debugging
environments in which all floating-point variables, including automatic variables each time they are
allocated on a stack, are initialized to signaling NaNs that reference symbol table entries describing their
origin in terms of the source program. Such initialization would be especially useful in an environment in
which the debugger is able to pause execution when a prespecified exception is signaled or flag is raised.

56
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

Index of operations 0

abs 23, 25, 35, 55
acos 43, 45
acosh 43, 45
addition 21, 34, 37, 49, 50
asin 43
asinh 43, 45
atan 43, 45
atan2 43, 45
atan2Pi 43-45
atanh 43, 45
atanPi 43, 44
class 25
compareQuietEqual 24, 29
compareQuietGreater 24, 30
compareQuietGreaterEqual 24, 30
compareQuietGreaterUnordered 24, 30
compareQuietLess 24, 30
compareQuietLessEqual 24, 30
compareQuietLessUnordered 24, 30
compareQuietNotEqual 24, 29
compareQuietNotGreater 24, 30
compareQuietNotLess 24, 30
compareQuietOrdered 24, 30
compareQuietUnordered 24, 30
compareSignalingEqual 24, 29
compareSignalingGreater 24, 29
compareSignalingGreaterEqual 24, 29
compareSignalingGreaterUnordered 24, 29
compareSignalingLess 24, 29
compareSignalingLessEqual 24, 29
compareSignalingLessUnordered 24, 29
compareSignalingNotEqual 24, 29
compareSignalingNotGreater 24, 29
compareSignalingNotLess 24, 29
compound 42, 44
convertFormat 22
convertFromDecimalCharacter 22
convertFromHexCharacter 22
convertFromInt 21
convertToDecimalCharacter 22
convertToHexCharacter 22
convertToIntegerExactTiesToAway 22, 27
convertToIntegerExactTiesToEven 22, 27
convertToIntegerExactTowardNegative 22, 27
convertToIntegerExactTowardPositive 22, 27
convertToIntegerExactTowardZero 22, 27
convertToIntegerTiesToAway 22, 27
convertToIntegerTiesToEven 22, 27
convertToIntegerTowardNegative 22, 27
convertToIntegerTowardPositive 22, 27
convertToIntegerTowardZero 22, 27
copy 23, 35
copySign 23, 35, 55
cos iv, 42, 43

cosh 43, 45
cosPi 43-45
decodeBinary 23
decodeDecimal 23
defaultModes 46
division 21, 34, 37, 49
dot 47
encodeBinary 23
encodeDecimal 23
exp iv, 42, 43
exp10 42, 43
exp10m1 42, 43
exp2 42, 43
exp2m1 42, 43
expm1 42, 43
fusedMultiplyAdd 4, 21, 34, 35, 37, 49, 50, 52
getBinaryRoundingDirection 46
getDecimalRoundingDirection 46
hypot 42, 43
is754version1985 24
is754version2008 24
isCanonical 25
isFinite 25
isInfinite 25
isNaN 25
isNormal 25
isSignaling 25
isSignMinus 25
isSubnormal 25
isZero 25
log 42, 43, 45
log10 32, 42, 43
log10p1 42, 43
log2 13, 42, 43
log2p1 42, 43
logB 17, 20, 37, 47
logp1 42, 43
lowerFlags 26
maxNum 19, 49, 52
maxNumMag 19, 49, 52
minNum 19, 49, 52
minNumMag 19, 49, 52
multiplication 21, 34, 37, 49, 50
negate 23, 35, 55
nextDown 19
nextUp 19
pow 42, 44
pown 42, 44
powr 42, 44
quantize 18, 20, 35, 37
radix 25
raiseFlags 26, 36
remainder 19, 34, 37
restoreFlags 26, 36

57
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

IEEE Std 754-2008
IEEE Standard for Floating-Point Arithmetic

restoreModes 46
rootn 42, 44
roundToIntegralExact 18, 19, 28, 35
roundToIntegralTiesToAway 19, 28
roundToIntegralTiesToEven 19, 27
roundToIntegralTowardNegative 19, 28
roundToIntegralTowardPositive 19, 28
roundToIntegralTowardZero 19, 27
rSqrt 42, 44
sameQuantum 26
saveAllFlags 26
saveModes 46
scaleB 17, 20, 47
scaledProd 47
scaledProdDiff 47
scaledProdSum 47

setBinaryRoundingDirection 46
setDecimalRoundingDirection 46
sin 42, 43
sinh 43, 45
sinPi 43, 44
squareRoot 21, 34, 35, 37, 49
subtraction 21, 23, 34, 37, 49
sum 46, 47
sumAbs 47
sumSquare 47
tan 42, 43, 45
tanh 43, 45
testFlags 26
testSavedFlags 26
totalOrder 25, 28, 35
totalOrderMag 25

58
Copyright © 2008 IEEE. All rights reserved.

Authorized licensed use limited to: Florida State University. Downloaded on September 28,2010 at 11:53:48 UTC from IEEE Xplore. Restrictions apply.

	IEEE Std 754™-2008 Front cover
	Title page
	Introduction
	Notice to users
	Laws and regulations
	Copyrights
	Updating of IEEE documents
	Errata
	Interpretations
	Patents

	Participants
	Contents
	Important notice
	1. Overview
	1.1 Scope
	1.2 Purpose
	1.3 Inclusions
	1.4 Exclusions
	1.5 Programming environment considerations
	1.6 Word usage

	2. Definitions, abbreviations, and acronyms
	2.1 Definitions
	2.2 Abbreviations and acronyms

	3. Floating-point formats
	3.1 Overview
	3.1.1 Formats
	3.1.2 Conformance

	3.2 Specification levels
	3.3 Sets of floating-point data
	3.4 Binary interchange format encodings
	3.5 Decimal interchange format encodings
	3.5.1 Cohorts
	3.5.2 Encodings

	3.6 Interchange format parameters
	3.7 Extended and extendable precisions

	4. Attributes and rounding
	4.1 Attribute specification
	4.2 Dynamic modes for attributes
	4.3 Rounding-direction attributes
	4.3.1 Rounding-direction attributes to nearest
	4.3.2 Directed rounding attributes
	4.3.3 Rounding attribute requirements

	5. Operations
	5.1 Overview
	5.2 Decimal exponent calculation
	5.3 Homogeneous general-computational operations
	5.3.1 General operations
	5.3.2 Decimal operation
	5.3.3 logBFormat operations

	5.4 formatOf general-computational operations
	5.4.1 Arithmetic operations
	5.4.2 Conversion operations for floating-point formats and decimal character sequences
	5.4.3 Conversion operations for binary formats

	5.5 Quiet-computational operations
	5.5.1 Sign bit operations
	5.5.2 Decimal re-encoding operations

	5.6 Signaling-computational operations
	5.6.1 Comparisons

	5.7 Non-computational operations
	5.7.1 Conformance predicates
	5.7.2 General operations
	5.7.3 Decimal operation
	5.7.4 Operations on subsets of flags

	5.8 Details of conversions from floating-point to integer formats
	5.9 Details of operations to round a floating-point datum to integral value
	5.10 Details of totalOrder predicate
	5.11 Details of comparison predicates
	5.12 Details of conversion between floating-point data and external character sequences
	5.12.1 External character sequences representing zeros, infinities, and NaNs
	5.12.2 External decimal character sequences representing finite numbers
	5.12.3 External hexadecimal-significand character sequences representing finite numbers

	6. Infinity, NaNs, and sign bit
	6.1 Infinity arithmetic
	6.2 Operations with NaNs
	6.2.1 NaN encodings in binary formats
	6.2.2 NaN encodings in decimal formats
	6.2.3 NaN propagation

	6.3 The sign bit

	7. Default exception handling
	7.1 Overview: exceptions and flags
	7.2 Invalid operation
	7.3 Division by zero
	7.4 Overflow
	7.5 Underflow
	7.6 Inexact

	8. Alternate exception handling attributes
	8.1 Overview
	8.2 Resuming alternate exception handling attributes
	8.3 Immediate and delayed alternate exception handling attributes

	9. Recommended operations
	9.1 Conforming language- and implementation-defined functions
	9.1.1 Exceptions

	9.2 Recommended correctly rounded functions
	9.2.1 Special values

	9.3 Operations on dynamic modes for attributes
	9.3.1 Operations on individual dynamic modes
	9.3.2 Operations on all dynamic modes

	9.4 Reduction operations

	10. Expression evaluation
	10.1 Expression evaluation rules
	10.2 Assignments, parameters, and function values
	10.3 preferredWidth attributes for expression evaluation
	10.4 Literal meaning and value-changing optimizations

	11. Reproducible floating-point results
	Annex A (informative) Bibliography
	Annex B (informative) Program debugging support
	Index of operations

